K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2016

Gọi ƯCLN(2n+1;6a+4)=d
2n+1 \(⋮\) d\(\Rightarrow\) 6n +3\(⋮\) d
6n+4\(⋮\)d
\(\Rightarrow\)(6n+4)-(6n+3)\(⋮\) d
\(\Rightarrow\)6n+4 - 6n-3\(⋮\) d
\(\Rightarrow1⋮d\Rightarrow d=1\)

27 tháng 12 2016

Gọi d là ƯCLN (2a + 1; 6a + 4) Nên ta có :

2a + 1 ⋮ d và 6n + 4 ⋮ d

=> 3 ( 2a + 1 ) ⋮ d và 6n + 4 ⋮ d

=> 6a + 3 ⋮ d và 6a + 4 ⋮ d

=> (6a + 4) - (6a + 3) ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN (2a + 1; 6a + 4) = 1 => 2a + 1 và 6a + 4 là nguyên tố cùng nhau ( đpcm )

Cuối học kì I lớp 6 đề khó vậy !!

25 tháng 11 2015

gọi d=2a+1 và 6a+4

suy ra 2a+1 chia hết cho d; 6a+4 chia hết cho d

suy ra : (6a+4)-(2a+1) chia hết cho d

suy ra (6a+4)-3(2a+1) chia hết cho d

suy ra 1 chia hết cho d suy ra d=1

vậy 2a+1 và 6a+4 là hai số nguyên tố cùng nhau

đúng rồi đấy nhớ tick cho mình nhé!

 

13 tháng 12 2015

Gọi d là ƯC(2a+1;6a+4)             (d thuộc N*)

=> 2a+1 chia hết cho d;6a+4 chia hết cho d

=>3(2a+1) chia hết cho d hay 6a+3 chia hết cho d

=>(6a+4)-(6a+3) chia hết cho d

     6a+4-6a-3     chia hết cho d

     (6a-6a)+(4-3) chia hết cho d

                  1     chia hết cho d

=> d=1

=> 2a+1 và 6a+4 là 2 số nguyên tố cùng nhau ( a thuộc N*) 

      Vậy 2a+1 và 6a+4 là 2 số nguyên tố cùng nhau ( a thuộc N*) 

18 tháng 12 2021

Em tham khảo:

Gọi d là ƯCLN (2a + 1; 6a + 4) Nên ta có :

2a + 1 ⋮ d và 6n + 4 ⋮ d

=> 3 ( 2a + 1 ) ⋮ d và 6n + 4 ⋮ d

=> 6a + 3 ⋮ d và 6a + 4 ⋮ d

=> (6a + 4) - (6a + 3) ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN (2a + 1; 6a + 4) = 1 => 2a + 1 và 6a + 4 là nguyên tố cùng nhau ( đpcm )

18 tháng 12 2021

Gọi d là ƯC(2a+1;6a+4)             (d thuộc N*)

=> 2a+1 chia hết cho d;6a+4 chia hết cho d

=>3(2a+1) chia hết cho d hay 6a+3 chia hết cho d

=>(6a+4)-(6a+3) chia hết cho d

     6a+4-6a-3     chia hết cho d

     (6a-6a)+(4-3) chia hết cho d

                  1     chia hết cho d

=> d=1

=> 2a+1 và 6a+4 là 2 số nguyên tố cùng nhau ( a thuộc N*) 

      Vậy 2a+1 và 6a+4 là 2 số nguyên tố cùng nhau ( a thuộc N*)

27 tháng 12 2020

Gọi ƯCLN(2a + 1 ; 6a + 4) = d

=> \(\hept{\begin{cases}2a+1⋮d\\6a+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2a+1\right)⋮d\\6a+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6a+3⋮d\\6a+4⋮d\end{cases}}\Rightarrow\left(6a+4\right)-\left(6a+3\right)⋮d\)

=> \(1⋮d\Rightarrow d=1\)

Vậy 2a + 1 ; 6a + 4 là 2 số nguyên tố cùng nhau 

5 tháng 1 2019

Gọi d là ƯCLN (2a + 1; 6a + 4) Nên ta có :

2a + 1 ⋮ d và 6n + 4 ⋮ d

=> 3 ( 2a + 1 ) ⋮ d và 6n + 4 ⋮ d

=> 6a + 3 ⋮ d và 6a + 4 ⋮ d

=> (6a + 4) - (6a + 3) ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN (2a + 1; 6a + 4) = 1 => 2a + 1 và 6a + 4 là nguyên tố cùng nhau ( đpcm )

5 tháng 1 2019

\(\text{Gọi }d=\left(2a+1,6a+4\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2a+1\right)⋮d\left(1\right)\\\left(6a+4\right)⋮d\end{cases}}\)

\(\text{Từ ( 1 ) suy ra }3\left(2a+1\right)=\left(6a+3\right)⋮d\)

\(\Rightarrow\left[\left(6a+4\right)-\left(6a+3\right)\right]⋮d\)

\(\Rightarrow1⋮d\text{ hay }d=1\) 

\(\text{Vậy hai số 2a + 1 và 6a + 4 nguyên tố cùng nhau}\)

11 tháng 12 2021

giải bài này giúp mình với

29 tháng 11 2015

đặt 3n+3 và 6n+7 =d

suy ra : 3n+3 chia hết cho d ; 6n+7 chia hết chia d

suy ra : (6n+7)-(3n+3 chia hết cho d

suy ra : (6n+7)-2(3n+3) chia hết cho d

suy ra : 1 chia hết cho d 

suy ra d = 1

vậy 3n+3 và 6n+7  là hai số nguyên tố cùng nhau

tick cho mình nhé chăc chắn dúng .Thank you very much

29 tháng 11 2015

tôi nghĩ chơi với bạn luôn