Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(2n+1;6a+4)=d
2n+1 \(⋮\) d\(\Rightarrow\) 6n +3\(⋮\) d
6n+4\(⋮\)d
\(\Rightarrow\)(6n+4)-(6n+3)\(⋮\) d
\(\Rightarrow\)6n+4 - 6n-3\(⋮\) d
\(\Rightarrow1⋮d\Rightarrow d=1\)
Gọi d là ƯCLN (2a + 1; 6a + 4) Nên ta có :
2a + 1 ⋮ d và 6n + 4 ⋮ d
=> 3 ( 2a + 1 ) ⋮ d và 6n + 4 ⋮ d
=> 6a + 3 ⋮ d và 6a + 4 ⋮ d
=> (6a + 4) - (6a + 3) ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN (2a + 1; 6a + 4) = 1 => 2a + 1 và 6a + 4 là nguyên tố cùng nhau ( đpcm )
Cuối học kì I lớp 6 đề khó vậy !!
1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d \(\in\) { 2; 4 }. (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\).
Vì vậy d = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.
Gọi d là ƯC(2a+1;6a+4) (d thuộc N*)
=> 2a+1 chia hết cho d;6a+4 chia hết cho d
=>3(2a+1) chia hết cho d hay 6a+3 chia hết cho d
=>(6a+4)-(6a+3) chia hết cho d
6a+4-6a-3 chia hết cho d
(6a-6a)+(4-3) chia hết cho d
1 chia hết cho d
=> d=1
=> 2a+1 và 6a+4 là 2 số nguyên tố cùng nhau ( a thuộc N*)
Vậy 2a+1 và 6a+4 là 2 số nguyên tố cùng nhau ( a thuộc N*)
Gọi a=ƯC(m,mn+8)
Ta có: m chia hết cho a(m lẻ => a lẻ)
=> mn chia hết cho a.
Lạ có: mn+8 chia hết cho a.
=> mn+8-mn chia hết cho a
=> 8 chia hết cho a.
=> a\(\in\)Ư(8)={1,2,4,8}
Vì a lẻ.
=> a=1
=> ƯC(m,mn+8)=1
=> m và mn+8 là 2 số nguyên tố cùng nhau.
Ừ thì do n+1 và n+2 là 2 stn liên tiếp nên chúng luôn phải nguyên tố cùng nhau hoi
gọi d=2a+1 và 6a+4
suy ra 2a+1 chia hết cho d; 6a+4 chia hết cho d
suy ra : (6a+4)-(2a+1) chia hết cho d
suy ra (6a+4)-3(2a+1) chia hết cho d
suy ra 1 chia hết cho d suy ra d=1
vậy 2a+1 và 6a+4 là hai số nguyên tố cùng nhau
đúng rồi đấy nhớ tick cho mình nhé!