K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2021

\(-B=\left(x^2-3x\right)\left(x^2-3x+10\right)-2010=\left(x^2-3x+5\right)^2-2035\).

Ta có \(x^2-3x+5=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\forall x\).

Do đó \(-B\ge\left(\dfrac{11}{4}\right)^2-2035=\dfrac{-32439}{16}\Rightarrow B\le\dfrac{32439}{16}\).

...

 

15 tháng 10 2023

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

15 tháng 10 2023

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

Câu 18: Giá trị nhỏ nhất của biểu thức x2 – 6x + 13 làA.   3                                      B. 4                               C. -3                     D. -4    Câu 19 : Giá trị lớn nhất của biểu thức  -x2 +4x -  7 làA.   3                                    B. 4                                C. -3                        D. 5  Câu 20: Điền vào chỗ trống 4x2 + 4x – y2 + 1 = (…)(2x + y + 1):       A. 2x + y +...
Đọc tiếp

Câu 18: Giá trị nhỏ nhất của biểu thức x2 – 6x + 13 là

A.   3                                      B. 4                               C. -3                     D. -4  

  Câu 19 : Giá trị lớn nhất của biểu thức  -x2 +4x -  7 là

A.   3                                    B. 4                                C. -3                        D. 5

  Câu 20: Điền vào chỗ trống 4x2 + 4x – y2 + 1 = (…)(2x + y + 1):

       A. 2x + y + 1                                                           B. 2x – y + 1

      C. 2x – y                                                                  D. 2x + y

2
30 tháng 10 2021

18.B
19.C
20.C

30 tháng 10 2021

18. B

19. C

20.C

1 tháng 12 2018

a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)

b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)

c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì 

\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)

d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)

Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)

Vậy GTLN của B là - 1 khi x = -1

2 tháng 12 2018

Thanks bạn ;)

a: Ta có: \(x^2=3-2\sqrt{2}\)

nên \(x=\sqrt{2}-1\)

Thay \(x=\sqrt{2}-1\) vào A, ta được:

\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)

13 tháng 7 2021

cau A thay = bằng cộng ạ

 

25 tháng 6 2019

TL:

a,\(-\left(x^2-2x+1\right)+1\)1

\(-\left(x-1\right)^2+1\) \(\le\) 1

=>giá trị lớn nhất của biểu thức là 1

vậy........

b,\(-\left(9x^2+6x+1\right)+20\) 

   \(-\left(3x+1\right)^2+20\) 

  \(\le20\) 

=>giá trị lớn nhất cuar biểu thức là 20

vậy.........

hc tốt

Dấu của hạng tử bậc là dấu âm nên chỉ tìm được giá trị lớn nhất thôi nhé.

a) A=2xx2A=2xx2+11A=1(x22x+1)A=1(x1)2Do (x1)20xA=1(x1)21x Du “=” xy ra khi: (x1)2=0x1=0x=1Vy MaxA=1 khi x=1

b) B=196x9x2B=2016x9x2B=20(1+6x+9x2)B=20(1+3x)2Do (1+3x)20xB=20(1+3x)220xDu "=" xy ra khi:(1+3x)2=01+3x=03x=1x=13Vy MaxB=20 khi x=13