Chứng minh aaabbb gạch đầu luôn luôn chia hết cho 37
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
aaabbb=aaa×1000+bbb=111×(1000a+b)=3×37×(1000a+b)
Vì 37 chia hết cho 37 nên aaabbb chia hết cho 37
Thanks nha nhưng tôi nghĩ thế này : aaabbb = a.100000 + a.10000 + a.1000 + b.100 + b.10 + b.1
aaabbb = a.( 100000 + 10000 + 1000) + b. ( 100 + 10 + 1 )
aaabbb = a.111000 + b.111
aaabbb = a.3000.37 + b.3.37
Vì 37 chia hết cho 37 nên nhân với số nào cũng chia hết cho 37 suy ra aaabbb chia hết cho 37
100000a+10000a+1000a+100b+10b+b
111000:37
111:37
vậy aaabbb:37
1000aaa+bbb=1000.111a+111b=37.3(1000a+b)
vậy aaabbb chia hết cho 37
ta có : aaabbb=aaa.1000+bbb=a.111.1000+b.111 =(a.1000+b).111 Mà 111chia hết cho 37 =>(a.1000+b).111chia hết cho 37 Vậy aaabbb luôn chia hết cho 37
aaabbb = aaa000 + bbb
= a.111.1000 + b.111
= a.3.37.1000 + b.3.37
= 37.(a.3.1000 + b.3) ⋮ 37
Ta có: \(\overline{aaabbb}=\overline{aaa000}+\overline{bbb}\)
\(=111a.1000+111b\)
\(=3a.37.1000+3b.37\)
\(=37\left(3a.1000+3b\right)\) chia hết cho 37
Vậy \(\overline{aaabbb}\) chia hết cho 37.
b) ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
aaabbb = aaa000 + bbb
= a.111.1000 + b.111
= a.3.37.1000 + b.3.37
= 37.(a.3.1000 + b.3) ⋮ 37
a)
- nếu a và b cùng là số chẵn thì ab(a+b)chia hết cho 2
- nếu a chẵn,b lẻ(hoặc a lẻ,b chẵn)thì ab (a+b) chia hết cho 2
-nếu a và b cùng lẻ thì (a+b) chẵn nên (a+b)chia hết cho 2,vậy ab(a+b) chia hết cho 2
vậy nếu a,b thuộc N thì ab(a+b) chia hết cho 2
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
Ta có:
aaabbb = 1000aaa + bbb
= 1000.111a + 111b
= 111(1000a + b)
= 37.3.(1000a + b)
Vậy aaabbb luôn chia hết cho 37 (đpcm)