K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7+2+1+3

8
21 tháng 12 2016

7+2+1+3=13

k nha Tomoyo

21 tháng 12 2016

\(7+2+1+3\)

\(=\left(7+2+1\right)+3\)

\(=10+3\)

\(=13\)

27 tháng 3

\(\left(\dfrac{5}{7}-\dfrac{7}{7}\right)-\left[0,2-\left(-\dfrac{2}{7}-\dfrac{1}{10}\right)\right]\)

=\(-\dfrac{2}{7}-\left[\dfrac{1}{5}+\dfrac{2}{7}+\dfrac{1}{10}\right]\)  

=\(-\dfrac{2}{7}-\dfrac{1}{5}-\dfrac{2}{7}-\dfrac{1}{10}\) 

=\(\left(-\dfrac{2}{7}-\dfrac{2}{7}\right)-\left(\dfrac{1}{5}+\dfrac{1}{10}\right)\) 

=\(-\dfrac{4}{7}-\left(\dfrac{2}{10}+\dfrac{1}{10}\right)\) 

=\(-\dfrac{4}{7}-\dfrac{3}{10}\) 

=\(-\dfrac{40}{70}-\dfrac{21}{70}\)

=\(-\dfrac{61}{70}\)

 

 

27 tháng 3

   (3 - \(\dfrac{1}{4}\) + \(\dfrac{2}{3}\)) - (5 - \(\dfrac{1}{3}\) - \(\dfrac{5}{6}\)) - (6 - \(\dfrac{7}{4}\) - \(\dfrac{3}{2}\))

= 3 - \(\dfrac{1}{4}\) + \(\dfrac{2}{3}\) - 5 + \(\dfrac{1}{3}\) + \(\dfrac{5}{6}\) - 6 + \(\dfrac{7}{4}\) + \(\dfrac{3}{2}\)

= (3 - 5 - 6) + ( \(\dfrac{7}{4}\) - \(\dfrac{1}{4}\)) + (\(\dfrac{2}{3}\) + \(\dfrac{1}{3}\)) +  \(\dfrac{3}{2}\) + \(\dfrac{5}{6}\)

= - 8  + \(\dfrac{3}{2}\) + 1 + \(\dfrac{3}{2}\) + \(\dfrac{5}{6}\)

= (- 8 + 1) + (\(\dfrac{3}{2}\) + \(\dfrac{3}{2}\)) + \(\dfrac{5}{6}\)

= -7 + 3 + \(\dfrac{5}{6}\)

= - 4 + \(\dfrac{5}{6}\)

\(\dfrac{-19}{6}\)

20 tháng 7 2023

a) -1/24 - [ 1/4 - ( 1/2 - 7/8 )]

= -1/24 - [ 1/4 +3/8 ]

= -1/24 - 5/8

= -2/3.

 

20 tháng 7 2023

a) -1/24 - [ 1/4 - ( 1/2 - 7/8 )]

= -1/24 - [ 1/4 +3/8 ]

= -1/24 - 5/8

= -2/3.

DD
4 tháng 7 2021

\(A=1+7+7^2+7^3+...+7^{2007}\)

\(7A=7+7^2+7^3+7^4+...+7^{2008}\)

\(7A-A=\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)

\(6A=7^{2008}-1\)

\(A=\frac{7^{2008}-1}{6}\)

Tương tự, \(B=\frac{4^{101}-1}{3},C=\frac{3^{101}-1}{2}\).

DD
4 tháng 7 2021

\(D=7+7^3+7^5+7^7+...+7^{99}\)

\(7^2.D=7^3+7^5+7^7+7^9+...+7^{101}\)

\(\left(7^2-1\right)D=\left(7^3+7^5+7^7+7^9+...+7^{101}\right)-\left(7+7^3+7^5+7^7+...+7^{99}\right)\)

\(48D=7^{101}-7\)

\(D=\frac{7^{101}-7}{48}\)

Tương tự, \(E=\frac{2^{9011}-2}{3}\)

5: \(=3-\dfrac{1}{4}+\dfrac{2}{3}-5+\dfrac{1}{3}+\dfrac{6}{5}-6+\dfrac{7}{4}-\dfrac{3}{2}\)

\(=3-5-6+\dfrac{-1}{4}+\dfrac{7}{4}+\dfrac{2}{3}+\dfrac{1}{3}+\dfrac{6}{5}-\dfrac{3}{2}\)

\(=-8+\dfrac{3}{2}+1+\dfrac{-3}{10}\)

\(=-7+\dfrac{15-3}{10}=-7+\dfrac{6}{5}=-\dfrac{29}{5}\)

6: \(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)

\(=6-5-3-\dfrac{2}{3}-\dfrac{5}{3}+\dfrac{7}{3}+\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\)

\(=-2-\dfrac{1}{2}=-\dfrac{5}{2}\)

7: \(=\dfrac{5}{3}-\dfrac{3}{7}+9-2-\dfrac{5}{7}+\dfrac{2}{3}+\dfrac{8}{7}-\dfrac{4}{3}-10\)

\(=9-2-10+\dfrac{5}{3}+\dfrac{2}{3}-\dfrac{4}{3}+\dfrac{-3}{7}-\dfrac{5}{7}+\dfrac{8}{7}\)

=-3+1

=-2

8: \(=8-\dfrac{9}{4}+\dfrac{2}{7}+6+\dfrac{3}{7}-\dfrac{5}{4}-3-\dfrac{2}{4}+\dfrac{9}{7}\)

\(=8+6-3+\dfrac{2}{7}+\dfrac{3}{7}+\dfrac{9}{7}-1-\dfrac{2}{4}\)

\(=11+2-1-\dfrac{1}{2}\)

=11+1/2

=11,5

3 tháng 10 2023

\(\dfrac{2}{7}:\dfrac{1}{4}-\dfrac{1}{7}=\dfrac{2}{7}x\dfrac{4}{1}-\dfrac{1}{7}=\dfrac{8}{7}-\dfrac{1}{7}=\dfrac{7}{7}=1\)

\(\dfrac{7}{11}x0+\dfrac{5}{9}:\dfrac{1}{2}=0+\dfrac{5}{9}x\dfrac{2}{1}=\dfrac{10}{9}\)

\(\left(\dfrac{3}{7}+\dfrac{1}{4}\right):\dfrac{3}{4}=\left(\dfrac{12}{28}+\dfrac{7}{28}\right)x\dfrac{4}{3}=\dfrac{19}{28}x\dfrac{4}{3}=\dfrac{19}{21}\)

\(\dfrac{4}{3}x\dfrac{1}{2}+\dfrac{7}{2}:\dfrac{1}{4}=\dfrac{4}{6}+\dfrac{7}{2}x\dfrac{4}{1}=\dfrac{2}{3}+\dfrac{14}{1}=\dfrac{2}{3}+14=14\dfrac{2}{3}=\dfrac{44}{3}\)

8 tháng 11 2023

cảm ơn nhé

 

13 tháng 7 2019

đến 1/5 là xuống phần mẫu số nhé

15 tháng 5 2017

Ta có

A = \(\dfrac{1+7+7^2+7^3+...+7^{11}}{1+7+7^2+7^3+...+7^{10}}\)

Đặt C = 1 + 7 + 72 + 73+...+711

7C = 7 + 72 + 73 + ... + 711 + 712

=> 6C = 712 - 1

C = \(\dfrac{7^{12}-1}{6}\)

Đặt D = 1 + 7 + 72 + 73+...+710

7D = 7 + 72 + 73 + ... + 710 + 711

=> 6D = \(7^{11}-1\)

D = \(\dfrac{7^{11}-1}{6}\)

=> A = \(\dfrac{\dfrac{7^{12}-1}{6}}{\dfrac{7^{11}-1}{6}}\)

A = \(\dfrac{7^{12}-1}{6}\) : \(\dfrac{7^{11}-1}{6}\)

A = \(\dfrac{7^{12}-1}{6}.\dfrac{6}{7^{11}-1}\)

A = \(\dfrac{7^{12}-1}{7^{11}-1}\) = 7, 000000003

Lại có:

B = \(\dfrac{1+3+3^2+3^3+...+3^{11}}{1+3+3^2+3^3+...+3^{10}}\)\

Đặt H = \(1+3+3^2+3^3+...+3^{11}\)

3H = \(3+3^2+3^3+...+3^{12}\)

=> 2H = \(3^{12}-1\)

H = \(\dfrac{3^{12}-1}{2}\)

Đặt Q = \(1+3+3^2+3^3+...+3^{10}\)

3Q = \(3+3^2+3^3+...+3^{10}+3^{11}\)

=> 2Q = \(3^{11}-1\)

Q = \(\dfrac{3^{11}-1}{2}\)

=> B = \(\dfrac{\dfrac{3^{12}-1}{2}}{\dfrac{3^{11}-1}{2}}\)

B = \(\dfrac{3^{12}-1}{2}:\dfrac{3^{11}-1}{2}\)

B = \(\dfrac{3^{12}-1}{2}.\dfrac{2}{3^{11}-1}\)

B = \(\dfrac{3^{12}-1}{3^{11}-1}\)

B = 3, 00001129

Vì 7, 000000003 > 3, 00001129

=> A > B

Vậy A > B

15 tháng 5 2017

Bài này đang làm dở thấy có ng` làm r nên thôi ak