A là một điểm nằm ngoài đường tròn tâm I. Vẽ các tiếp tuyến AE, AF. G là giao điểm của IA và EF. Vẽ cát tuyến AMN với M nằm giữa A và N. Chứng minh GF là tia phân giác góc MGN.A là một điểm nằm ngoài đường tròn tâm I. Vẽ các tiếp tuyến AE, AF. G là giao điểm của IA và EF. Vẽ cát tuyến AMN với M nằm giữa A và N. Chứng minh GF là tia phân giác góc MGN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O
Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE
Hay OA là trung trực của BE
\(\Rightarrow AB=AE\)
Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)
\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)
do I là trung điểm của MN
⇒I là trung trực của MN
⇒I⊥MN
⇒∠OIM=90⇔∠OIA=90
xét tứ giác ABIO có ∠OBA=∠OIA=90
⇒ABIO nội tiếp
⇒∠BIA=∠AOB (cùng chắn \(\stackrel\frown{AB}\)) (1)
xét tứ giác ACOI có ∠OIA=∠OCA=90
⇒ACOI nội tiếp
⇒∠AIC=∠AOC (cùng chắn \(\stackrel\frown{AC}\)) (2)
xét tứ giác ABOC nội tiếp đường tròn ; AB=AC
⇒∠AOB=∠AOC (chắn 2 cung = nhau) (3)
từ (1);(2);(3) ⇒∠BIA=∠AIC
⇒IA là tia phân giác ∠BIC
a) Xét tứ giác ABOC có
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: OB=OC(=R)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AB=AC(cmt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA\(\perp\)BC
Xét ΔOBC có OB=OC(=R)
nên ΔOBC cân tại O(Định nghĩa tam giác cân)
mà OH là đường cao ứng với cạnh BC
nên H là trung điểm của BC(Đpcm)
sao không có câu B bạn ơi ?? có câu c càng tốt nhưng không làm được thì bỏ qua . nhưng bạn giúp minh câu B với , thankkk
Bước 1: CM: \(MNIG\) nội tiếp.
Theo hệ thức lượng trong tam giác vuông \(AEI\) ta có \(AG.AI=AE^2=AM.AN\) nên \(MNIG\) nội tiếp.
Bước 2: CM: 2 tam giác \(ING\) và \(IAN\) đồng dạng.
Theo hệ thức lượng trong tam giác vuông \(AEI\) ta có \(IG.IA=IE^2=IN^2\) nên CM được điều trên.
Từ tứ giác \(MNIG\) nội tiếp suy ra \(\widehat{MGA}=\widehat{MNI}\).
Từ 2 tam giác đồng dạng suy ra \(\widehat{MNI}=\widehat{NGI}\).
Vậy \(\widehat{MGA}=\widehat{NGI}\) nên \(\widehat{MGE}=\widehat{NGE}\).
P/S: Đề bài đúng phải là "\(GF\) là ĐƯỜNG phân giác..."
P/S2: Điểm T trên hình là dư không cần thiết nha bạn.