tìm số tự nhiên x để phân số \(\frac{7x-8}{2x-3}\) có gía trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A= 7x-8/2x-3
=>2A=14x-16/2x-3=7.(2x-3)+5/2x-3=7+ (5/2x-3) có giá trị lớn nhất <=>5/2x-3 lớn nhất
<=>2x-3 dương nhỏ nhất
<=>2x-3=1
<=>2x=4<=>x=2
Với x=2=>A=14-8/4-3=6/1=6
vậy max A =6 <=>x=2
(7n-8)/(2n-3) = (7n - 21/2 + 5/2)/(2n - 3) = [(7/2)(2n-3) + 5/2]/(2n-3) = 7/2 + 5/(4n-6)
Phân số đã cho có GTLN khi 5/(4n-6) có GTLN, tức là khi 4n-6 có giá trị dương nhỏ nhất (với n là stn) hay n = 2
Trả lời : n = 2 (khi đó phân số có GTLN là 7/2 + 5/2 = 6)
Đặt \(A=\frac{7n-8}{2n-3}\)
\(\Rightarrow2A=\frac{14n-16}{2n-3}\)
\(\Rightarrow2A=\frac{7.\left(2n-3\right)+5}{2n-3}\)
\(\Rightarrow2A=7+\frac{5}{2n-3}\)
ĐỂ \(A_{Max}\Rightarrow2.A_{Max}\Rightarrow\left(\frac{5}{2n-3}\right)_{Max}\)
=>\(2n-3\)là số nguyên dương nhỏ nhỏ nhất co thể
\(\Rightarrow2n-3=1\Rightarrow n=2\)
\(\frac{7x-8}{2x-3}=\frac{2\left(7x-8\right)}{2\left(2x-3\right)}=\frac{7\left(2x-3\right)+5}{2\left(2x-3\right)}=\frac{7}{2}+\frac{5}{2\left(2x-3\right)}=\frac{7}{2}+\frac{5}{4x-6}\)
Đặt \(4x-6=k\Rightarrow4x=k+6\) (k thuộc N)
Để \(\frac{7x-8}{2x-3}\)đạt giá trị lớn nhất \(\Leftrightarrow k+6\)là số nguyên dương nhỏ nhất \(⋮4\)
Mà \(k+6\ge6\) => \(k+6=8\) => k = 2
=> x = 2
=> GTLN của \(\frac{7x-8}{2x-3}\) là 6 tại x = 2