K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

Ta co : 

A=abc+bca+cab=(100a+10b+c)+(100b+10c+a)+(100c+10a+b)

=111a+111b+111c

=111(a+b+c)

De A la so chinh phuong 

=> a+b+c <111

Ma a,b,c la so tu nhien be hon 10 nen a+b+c<30 va 111>30 nen a+b+c khong the bang 111

Hay A không phải là số chính phương 

nho k nha 

15 tháng 12 2016

Ta có : abc+bca=cab

111a+111b=111

111(a+b)=111

a+b=1 

Ma 1 khong phai la so chinh phuong 

\(\Rightarrow\)abc+bca=cab (dpcm)

chắc chắn đúng luôn 

16 tháng 1 2016

mình biết làm như vì lý do ngại giải quá nên bạn thông cảm vào đây:GIÚP TÔI GIẢI TOÁn

16 tháng 1 2016

Để A = abc + bca + cab = 111(a + b + c) = 3.37(a + b + c)

Để A là số chính phương thì a + b + c chia hết cho 3.37 

nhưng 3<a + b + c>27 nên a + b + c không chia hết cho 37

Vậy A không là số chính phương.

7 tháng 12 2014

Ta có:

A=abc+bca+cab = (100a+10b+c) + (100b+10c+a)+(100c+10a+b)   

                     =111a+111b+111c

                     =111(a+b+c)

Để A là số  chính phương thì suy ra a+b+c bé nhất phải bằng 111.

Mà a;b;c là số tự nhien bé hơn 10 nên a+b+c<30

và 111>30 nên a+b+c không thể bằng 111

Vậy A không phải là số chính phương

9 tháng 1 2016

Ta tách đến kết quả: A=111(a+b+c)
Vì a,b,c thuộc N* (vì 3 số trên gạch đầu bạn ạ) => a+b+c thuộc N*
                                                                       Mà 111 chia hết cho 111
                                                                       Do đó [111 (a+b+c)] chia hết cho 111
                                                                       hay A chia hết cho 111
                                Mà A là số chính phương => A chia hết cho 111^2
                                Như vậy vì a+b+c thuộc N* (khác 0) nên a+b+c bé nhất phải bằng 111 (*)
                                Lại thấy a,b,c là các chữ số nên a+b+c nhỏ hơn hoặc bằng 27, trái với (*)
Ctỏ A không phải là số chính phương.
P/s: Tbày theo ý bạn nhé, mik viết một số cái k cần nhưng cho dễ hiểu ý mak ^^
                 
 

24 tháng 11 2017

Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)

Có : A = (2k+1)^2+(2q+1)^2 = 4k^2+4k+1+4q^2+4q+1

 = 4.(k^2+k+q^2+q)+2

Ta thấy A chia hết cho 2 nguyên tố

Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4

=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2

=> A ko chính phương

=> ĐPCM

k mk nha

4 tháng 11 2015

Cau hoi tuong tu nhe 

Ban chi can doi so 5 thanh so 3 roi lam 

Tick nha

7 tháng 3 2017

Tổng của n số chẵn khác 0 đầu tiên là :

\(2+4+6+....+2n\)

\(=2\left(1+2+3+....+n\right)\)

\(=2.\frac{n\left(n+1\right)}{2}\)

\(=n\left(n+1\right)\) là tích 2 số tự nhiên liên tiếp 

=> \(n\left(n+1\right)\) không thể là số chính phương

=> Tổng của n số chẵn khác 0 đầu tiên không thể là số chính phương (đpcm)

9 tháng 12 2016

A=abc+bca+cab= 
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)= 
1011*(a+b+c) =3*337*(a+b+c) 

Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*) 

Vậy không tồn tại số chính phương A

A=abc+bca+cab= 
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)= 
1011*(a+b+c) =3*337*(a+b+c) 

Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*) 

Vậy không tồn tại số chính phương A

Hok tốt !

2 tháng 9 2020

\(A=\overline{abc}+\overline{bca}+\overline{cab}\)

\(A=100a+10b+c+100b+10c+a+100c+10a+b\)

\(A=111a+111b+111c\)

\(A=111\left(a+b+c\right)\)

Với A là số chính phương chia hết cho 111 thì A chia hết cho 12321

nên a+b+c phải chia hết cho 111 và a+b+c khác 0 thì không có số a,b,c thỏa mãn

vậy A không là số chính phương

22 tháng 12 2019

giả sử 2015^2016+2016^2017+2017^2018+2018^2019 là số chính phương

mà 2015^2016+2016^2017+2017^2018+2018^2019 là số chẵn=>2015^2016+2016^2017+2017^2018+2018^2019chia hết cho 4

ta có 2015^2016 ≡ (-1)^2016 (mod 4);   2016^2017 chia hết cho 4;   2017^2018 ≡ 1^2018 (mod 4);   2018^2019 ≡ 2^2019

=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ (-1)^2016+1^2018+2^2019 (mod 4)

<=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 1+1+2^2019(mod 4)

ta có 2^2019=4x2^2017 chia hết cho 4

=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 2 (mod 4) vô lí 

=> điều giả sử sai

=>ĐPCM