Cho a+b=8,ab=-3.Tính (a+b)³
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a - b = 3
=> ( a - b )2 = 9
=> a2 - 2ab + b2 = 9
=> 8 - 2ab = 9
=> 2ab = -1
=> ab = -1/2
a3 - b3 = a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2
= ( a3 - 3a2b + 3ab2 - b3 ) + ( 3a2b - 3ab2 )
= ( a - b )3 + 3ab( a - b )
= 33 + 3.(-1/2).3
= 27 - 9/2 = 45/2
\(a-b=3\)
\(\left(a-b\right)^2=3^2\)
\(a^2-2ab+b^2=9\)
\(8-2ab=9\)
\(2ab=8-9\)
\(2ab=-1\)
\(ab=-\frac{1}{2}\)
\(\hept{\begin{cases}a-b=3\\ab=-\frac{1}{2}\end{cases}}\)
\(\hept{\begin{cases}a=b+3\\b\left(b+3\right)=-\frac{1}{2}\end{cases}}\)
\(\hept{\begin{cases}a=b+3\\b^2+3b+\frac{1}{2}=0\end{cases}}\)
\(\orbr{\begin{cases}b=\frac{-3+\sqrt{7}}{2}\\b=\frac{-3-\sqrt{7}}{2}\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}a=\frac{\sqrt{7}}{2}\\a=\frac{-\sqrt{7}}{2}\end{cases}}\)
TH 1
\(a=\frac{\sqrt{7}}{2};b=\frac{-3+\sqrt{7}}{2}\)
\(a^3+b^2=\frac{32-5\sqrt{7}}{8}\)
TH 2
\(a=\frac{-\sqrt{7}}{2};b=\frac{-3-\sqrt{7}}{2}\)
\(a^3+b^2=\frac{32+5\sqrt{7}}{8}\)
a) \(a^3+b^3\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=6\left(a^2+2ab+b^2-3ab\right)\)
\(=6\left[\left(a+b\right)^2-3ab\right]\)
\(=6\left[6^2-3.8\right]\)
\(=6\left[36-24\right]=6.12=72\)
b) \(a^2+b^2\)
\(=a^2+2ab+b^2-2ab\)
\(=\left(a+b\right)^2-2.8\)
\(=6^2-16=36-16=20\)
\(\hept{\begin{cases}a+ab+b=3\\b+bc+c=8\\c+ca+a=15\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}a+ab+b+1=4\\b+bc+c+1=9\\c+ca+a+1=16\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\left(a+1\right)\left(b+1\right)=4\\\left(b+1\right)\left(c+1\right)=9\\\left(c+1\right)\left(a+1\right)=16\end{cases}}\) \(\left(1\right)\)
Nhân vế với vế \(\Rightarrow\left[\left(a+1\right)\left(b+1\right)\left(c+1\right)\right]^2=\left(24^2\right)\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=24\)\(\left(2\right)\)
Chia vế với vế của \(\left(2\right)\)cho lần lượt các pt của \(\left(1\right)\), ta được :
\(\hept{\begin{cases}a+1=\frac{8}{3}\\b+1=\frac{3}{2}\\c+1=6\end{cases}}\) \(\Rightarrow\) \(\hept{\begin{cases}a=\frac{5}{3}\\b=\frac{1}{2}\\c=5\end{cases}}\)
\(\Rightarrow a+b+c=\frac{43}{6}\)
Ta có: (a-b)2=3
=> a2-2ab+b2=3
mà a2+b2=8 => -2ab=-5
=> ab=5/2
Bài 1:
$a^2+b^2+c^2=ab+bc+ac$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2, (b-c)^2, (c-a)^2\geq 0$ với mọi $a,b,c$
Do đó để tổng của chúng bằng $0$ thì $a-b=b-c=c-a=0$
$\Leftrightarrow a=b=c$
Mà $a+b+c=3$ nên $a=b=c=1$
$\Rightarrow Q=(1+1)^2+(1+2)^3+(1+3)^3=95$
a + b = 8 ⇔ (a+b)3 = 83 = 512
nếu a + b = 8 thì ( a + b ) mũ 3 + 8 mũ 3
8 mũ 3 = 8 x 8 x 8 =512
mình nghĩ ab = - 3 đó là gợi ý đánh lừa người làm bài