K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 . 103 + 5 . 102 + 7 . 10

= 10 . (4 . 102 + 5 . 10 + 7)

= 10 . (400 + 50 + 7)

= 10 . 457 

= 4570

   4.10+ 5.102 + 7.10

= 4.10.102 + 5.102 + 70

= 40.102 + 5.102 + 70

= 102.(40 + 5) +70

= 100.45 + 70

= 4500 + 70

= 4570

1: =(-20/36+15/36)*(-3/10)+(-16/36+21/36)

=-5/36*(-3/10)+5/36

=5/36*13/10

=65/360=13/72

2: Bạn xem lại đề nha bạn, dãy số này không có quy luật nào hết luôn á

9 tháng 4 2017

a) \(P=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+...\dfrac{10}{46.56}\)

\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...\dfrac{1}{46}-\dfrac{1}{56}\)

\(P=1-\dfrac{1}{56}\)

\(P=\dfrac{55}{56}\)

b) \(A=\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{99.100}\)

\(A=3\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)

\(A=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=3\left(1-\dfrac{1}{100}\right)\)

\(A=3.\dfrac{99}{100}\)

\(A=\dfrac{297}{100}\)

c) \(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\)

\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\)

\(B=1-\dfrac{1}{103}\)

\(B=\dfrac{102}{103}\)

d) \(C=\dfrac{5}{1.4}+\dfrac{5}{4.7}+\dfrac{5}{7.10}+...+\dfrac{5}{100.103}\)

\(C=\dfrac{5}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\right)\)

\(C=\dfrac{5}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(C=\dfrac{5}{3}\left(1-\dfrac{1}{103}\right)\)

\(C=\dfrac{5}{3}.\dfrac{102}{103}\)

\(C=\dfrac{170}{103}\)

e) \(D=\dfrac{7}{1.5}+\dfrac{7}{5.9}+\dfrac{7}{9.13}+...+\dfrac{7}{101.105}\)

\(D=\dfrac{7}{4}\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{101.105}\right)\)

\(D=\dfrac{7}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{101}-\dfrac{1}{105}\right)\)

\(D=\dfrac{7}{4}\left(1-\dfrac{1}{105}\right)\)

\(D=\dfrac{7}{4}.\dfrac{104}{105}\)

\(D=\dfrac{26}{15}\)

12 tháng 8 2019

những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé

9 tháng 4 2017

a)\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{46}-\frac{1}{56}\)

=\(1-\frac{1}{56}=\frac{55}{56}\)

b)\(A.\frac{1}{3}=\frac{1}{3}.\left(\frac{3}{1.2}+\frac{3}{2.3}+....+\frac{3}{99.100}\right)\)

\(\frac{1}{3}A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{3}{99.100}\)

=> \(\frac{1}{3}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

=> \(\frac{1}{3}A=1-\frac{1}{100}=\frac{99}{100}\)

=> \(A=\frac{99}{100}.3=\frac{297}{100}\)

c)\(B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\)

=\(1-\frac{1}{103}=\frac{102}{103}\)

d) \(\frac{3}{5}C=\frac{3}{5}.\left(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\right)\)

=\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\)

=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{103}\)

=\(1-\frac{1}{103}=\frac{102}{103}\)

=>\(C=\frac{102}{103}.\frac{5}{3}=\frac{170}{103}\)

e) \(\frac{4}{7}D=\frac{4}{7}.\left(\frac{7}{1.5}+\frac{7}{5.9}+...+\frac{7}{101.105}\right)\)

=\(\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{101.105}\)

=\(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{101}-\frac{1}{105}\)

=\(1-\frac{1}{105}=\frac{104}{105}\)

=< D=\(\frac{104}{105}.\frac{7}{4}=\frac{26}{15}\)

25 tháng 2 2019

a) A = \(\frac{35}{3}\)

b) B = 74680

c) C = 140

25 tháng 2 2019

lời giải cơ mà

14 tháng 5 2017

B1
a)
\(\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+...+\dfrac{1}{28\cdot31}\\ =\dfrac{1}{3}\cdot\dfrac{3}{1\cdot4}+\dfrac{1}{3}\cdot\dfrac{3}{4\cdot7}+\dfrac{1}{3}\cdot\dfrac{3}{7\cdot10}+...+\dfrac{1}{3}\cdot\dfrac{3}{28\cdot31}\\ =\dfrac{1}{3}\cdot\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{28\cdot31}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{28}-\dfrac{1}{31}\right)\\ =\dfrac{1}{3}\cdot\left(1-\dfrac{1}{31}\right)\\ =\dfrac{1}{3}\cdot\dfrac{30}{31}\\ =\dfrac{10}{31}\)
b)
\(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{99\cdot101}\\ =\dfrac{5}{2}\cdot\dfrac{2}{1\cdot3}+\dfrac{5}{2}\cdot\dfrac{2}{3\cdot5}+\dfrac{5}{2}\cdot\dfrac{2}{5\cdot7}+...+\dfrac{5}{2}\cdot\dfrac{2}{99\cdot101}\\ =\dfrac{5}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{5}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\dfrac{100}{101}\\ =\dfrac{250}{101}\)
B2
\(A=\dfrac{10^5+4}{10^5-1}=\dfrac{10^5-1+5}{10^5-1}=\dfrac{10^5-1}{10^5-1}+\dfrac{5}{10^5-1}=1+\dfrac{5}{10^5-1}\\ B=\dfrac{10^5+3}{10^5-2}=\dfrac{10^5-2+5}{10^5-2}=\dfrac{10^5-2}{10^5-2}+\dfrac{5}{10^5-2}=1+\dfrac{5}{10^5-2} \)
\(10^5-1>10^5-2\Rightarrow\dfrac{5}{10^5-1}< \dfrac{5}{10^5-2}\Rightarrow1+\dfrac{5}{10^5-1}< 1+\dfrac{5}{10^5-2}\Leftrightarrow A< B\)

14 tháng 5 2017

B3
\(A=\dfrac{n-2}{n+3}\)
Để \(A\) có giá trị nguyên thì \(n-2⋮n+3\)
\(n-2=n+3+\left(-5\right)⋮n+3\Rightarrow-5⋮n+3\Rightarrow n+3\inƯ\left(-5\right)\)
\(Ư\left(-5\right)=\left\{-5;-1;1;5\right\}\)

n+3 -5 -1 1 5
n -8 -4 -2 2

Vậy \(n\in\left\{-8;-4;-2;2\right\}\)

\(B=\dfrac{3n+1}{n-1}\)
Để \(A\) có giá trị nguyên thì \(3n+1⋮n-1\)
\(3n+1=3n-3+4⋮n-1\Leftrightarrow3\cdot\left(n-1\right)+4⋮n-1\Rightarrow4⋮n-1\Rightarrow n-1\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
n-1 -4 -2 -1 1 2 4
n -3 -1 0 2 3 5

Vậy \(n\in\left\{-3;-1;0;2;3;5\right\}\)

25 tháng 3 2018

Bài nhìn vô muốn xỉu rồi ='((

1. a) \(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{91.94}+\frac{2}{94.97}\)

\(=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{91.94}+\frac{3}{94.97}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{97}\right)=\frac{2}{3}.\frac{96}{97}=\frac{64}{97}\)

b) Bạn tự làm, làm nữa chắc xỉu =((( Khi nào rảnh mình sẽ làm, nếu bạn cần

2 ) 

a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{1005}{2011}\)

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{1005}{2011}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{1005}{2011}:2=\frac{1005}{4022}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{1005}{4022}=\frac{3017}{4020+2}\)

\(\Rightarrow x=4020\)

24 tháng 3 2018

tu ma lam nguoi ta con gap hon min nhieu