ai giải hộ em cái
97-4(n+5)=234:2 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau bạn chú ý viết đầy đủ đề.
1.
\(\sqrt{9+4\sqrt{5}-\sqrt{9-4\sqrt{5}}}=\sqrt{9+4\sqrt{5}-\sqrt{5-2\sqrt{4.5}+4}}\)
\(=\sqrt{9+4\sqrt{5}-\sqrt{(\sqrt{5}-\sqrt{4})^2}}=\sqrt{9+4\sqrt{5}-(\sqrt{5}-\sqrt{4})}\)
\(=\sqrt{9+4\sqrt{5}-\sqrt{5}+2}=\sqrt{11+3\sqrt{5}}\)
2.
\(\sqrt{8-2\sqrt{7}-\sqrt{8+2\sqrt{7}}}=\sqrt{8-2\sqrt{7}-\sqrt{7+2\sqrt{7}+1}}\)
\(=\sqrt{8-2\sqrt{7}-\sqrt{(\sqrt{7}+1)^2}}\)
\(=\sqrt{8-2\sqrt{7}-\sqrt{7}-1}=\sqrt{7-3\sqrt{7}}\)
\(\hept{\begin{cases}2x+3y=4\\4x-2y=5\end{cases}}\)
<=> \(\hept{\begin{cases}4x+6y=8\\4x-2y=5\end{cases}}\)
<=>\(\hept{\begin{cases}8y=3\\2x+3y=4\end{cases}}\)
<=> \(\hept{\begin{cases}y=\frac{3}{8}\\2x+\frac{9}{8}=4\end{cases}}\)
<=> \(\hept{\begin{cases}y=\frac{3}{8}\\2x=\frac{23}{8}\end{cases}}\)
<=> \(\hept{\begin{cases}y=\frac{3}{8}\\x=\frac{23}{16}\end{cases}}\)
Vậy hệ phương trình có nghiệm (x;y) là \(\left(\frac{23}{16};\frac{3}{8}\right)\)
\(x^4+\sqrt{x^2+2016}=2016\)
\(\Leftrightarrow x^4+x^2+\frac{1}{4}=x^2+2016-\sqrt{x^2+2016}+\frac{1}{4}\)
\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\left(\sqrt{x^2+2016}-\frac{1}{2}\right)^2\)
\(\Leftrightarrow x^2+\frac{1}{2}=\sqrt{x^2+2016}-\frac{1}{2}\text{ }\left(do\text{ }\sqrt{x^2+2016}-\frac{1}{2}>0\right)\)
\(\Leftrightarrow x^2+1=\sqrt{x^2+2016}\)
\(t=x^2\ge0\)
\(\rightarrow t+1=\sqrt{t+2016}\Leftrightarrow t^2+2t+1=t+2016\)
\(\Leftrightarrow t^2+t-2015=0\Leftrightarrow t=\frac{-1+\sqrt{8061}}{2}\text{ }\left(do\text{ }t\ge0\right)\)
\(\Leftrightarrow x=\pm\sqrt{\frac{-1+\sqrt{8061}}{2}}\)
\(\sqrt{13+\sqrt{48}}=\sqrt{13+\sqrt{4.12}}=\sqrt{13+2\sqrt{12}}=\sqrt{\left(\sqrt{12}+1\right)^2}\)
\(=\sqrt{12}+1=2\sqrt{3}+1\)
\(\Rightarrow\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}-1\)
\(\Rightarrow\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{3+\sqrt{3}-1}=\sqrt{2+\sqrt{3}}\)
\(\Rightarrow\sqrt{\dfrac{4+2\sqrt{3}}{2}}=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)
\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}==2.\dfrac{\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)
2) biến đổi khúc sau như câu 1:
\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
1) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-\sqrt{13+\sqrt{4.12}}}=\sqrt{5-\sqrt{13+2\sqrt{12}}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{12}\right)^2+2.\sqrt{12}+1^2}}=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}=\sqrt{5-\left|\sqrt{4.3}+1\right|}\)
\(=\sqrt{5-\left(2\sqrt{3}+1\right)}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)
\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=2\sqrt{3+\sqrt{3}-1}=2\sqrt{2+\sqrt{3}}\)
\(=2\sqrt{\dfrac{4+2\sqrt{3}}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}\)
\(=2.\dfrac{\left|\sqrt{3}+1\right|}{\sqrt{2}}=\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{6}+\sqrt{2}\)
2) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{3}-1\) (như trên)
\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)
sao 97 lai tru cho so lon hon minh đc so nguyên âm ak
em không biết dk
tại cô giáo cho câu hỏi này khó quá em không làm được