K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2023

\(\left(3x^3y^2-9x^2y^2+15xy^3\right):3xy^2\)

\(=3x^3y^2:3xy^2-9x^2y^2:3xy^2+15xy^3:3xy^2\)

\(=\left(3:3\right)\cdot x^{3-1}\cdot y^{2-2}-\left(9:3\right)\cdot x^{2-1}\cdot y^{2-2}+\left(15:3\right)\cdot x^{1-1}\cdot y^{3-2}\)

\(=x^2-3x+5y\)

TH1: x>=5/3

A=3x-5+4x-6=7x-11

TH2: 3/5<x<5/3

A=5-3x+4x-6=x-1

AH
Akai Haruma
Giáo viên
19 tháng 7 2021

Bài 1:
a.

\(\frac{1}{2\sqrt{2}-3\sqrt{3}}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2}-3\sqrt{3})(2\sqrt{2}+3\sqrt{3})}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2})^2-(3\sqrt{3})^2}=\frac{2\sqrt{2}+3\sqrt{3}}{-19}\)

b.

\(=\sqrt{\frac{(3-\sqrt{5})^2}{(3-\sqrt{5})(3+\sqrt{5})}}=\sqrt{\frac{(3-\sqrt{5})^2}{3^2-5}}=\sqrt{\frac{(3-\sqrt{5})^2}{4}}=\sqrt{(\frac{3-\sqrt{5}}{2})^2}=|\frac{3-\sqrt{5}}{2}|=\frac{3-\sqrt{5}}{2}\)

 

AH
Akai Haruma
Giáo viên
19 tháng 7 2021

Bài 2.

a. 

\(=\frac{\sqrt{8}(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}=\frac{2\sqrt{2}(\sqrt{5}+\sqrt{3})}{5-3}=\sqrt{2}(\sqrt{5}+\sqrt{3})=\sqrt{10}+\sqrt{6}\)

b.

\(=\sqrt{\frac{(2-\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})}}=\sqrt{\frac{(2-\sqrt{3})^2}{2^2-3}}=\sqrt{(2-\sqrt{3})^2}=|2-\sqrt{3}|=2-\sqrt{3}\)

8 tháng 4 2021

\(C=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}\\ 2C=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2019}}\\ 2C-C=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2019}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}\right)\\ C=1-\dfrac{1}{2^{2020}}=\dfrac{2^{2020}-1}{2^{2020}}\)

Giải:

C=1/2 + 1/2^2 + 1/2^3 + ... + 1/2^2020

2C=1 + 1/2 + 1/2^2 + ... +1/2^2019

2C-C=(1+1/2+1/2^2+...+1/2^2019)-(1/2+1/2^2+1/2^3+...+1/2^2020)

C=1-1/2^2020

Chúc bạn học tốt!

a: =8/4-1/4=7/4

b: =3/9=1/3

c: =5/7-4/7=1/7

17 tháng 8 2022

a,\(\dfrac{7}{4}\)

b,\(\dfrac{1}{3}\)

c,\(\dfrac{1}{7}\)