Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x^3y^2-9x^2y^2+15xy^3\right):3xy^2\)
\(=3x^3y^2:3xy^2-9x^2y^2:3xy^2+15xy^3:3xy^2\)
\(=\left(3:3\right)\cdot x^{3-1}\cdot y^{2-2}-\left(9:3\right)\cdot x^{2-1}\cdot y^{2-2}+\left(15:3\right)\cdot x^{1-1}\cdot y^{3-2}\)
\(=x^2-3x+5y\)
TH1: x>=5/3
A=3x-5+4x-6=7x-11
TH2: 3/5<x<5/3
A=5-3x+4x-6=x-1
a: (x+1)(3-x)(x-2)2
\(=\left(3x-x^2+3-x\right)\left(x^2-4x+4\right)\)
\(=\left(-x^2+2x+3\right)\left(x^2-4x+4\right)\)
\(=-x^4+4x^3-4x^2+2x^3-8x^2+8x+3x^2-12x+12\)
\(=-x^4+6x^3-9x^2-4x+12\)
b: \(9x\left(1-x\right)+\left(3x-2\right)\left(3x+2\right)\)
\(=9x-9x^2+\left(3x\right)^2-4\)
\(=9x-9x^2+9x^2-4=9x-4\)
nếu chia ra như ông thì A= (x+y+z)^3 - (x+y-z)^3-[(y+z-x)^3 - (z+x-y)^3 ]
=(x+y+z)^3 - (x+y-z)^3-(y+z-x)^3 +(z+x-y)^3 đâu đúng chứ