Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
C=1/2 + 1/2^2 + 1/2^3 + ... + 1/2^2020
2C=1 + 1/2 + 1/2^2 + ... +1/2^2019
2C-C=(1+1/2+1/2^2+...+1/2^2019)-(1/2+1/2^2+1/2^3+...+1/2^2020)
C=1-1/2^2020
Chúc bạn học tốt!
Đặt \(A=\frac{\frac{1}{2020}+\frac{2}{2019}+\frac{3}{2018}+...+\frac{2019}{2}+\frac{2020}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{1+\left(\frac{1}{2020}+1\right)+\left(\frac{2}{2019}+1\right)+\left(\frac{3}{2018}+1\right)+...+\left(\frac{2019}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{\frac{2021}{2021}+\frac{2021}{2020}+\frac{2021}{2019}+...+\frac{2021}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{2021\left(\frac{1}{2021}+\frac{1}{2020}+\frac{1}{2019}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}=2021\)
\(C=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}\\ 2C=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2019}}\\ 2C-C=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2019}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}\right)\\ C=1-\dfrac{1}{2^{2020}}=\dfrac{2^{2020}-1}{2^{2020}}\)