K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

\(3b+a-2\sqrt{ab}-2\sqrt{a}+1\)

\(=\left(3b-\frac{2.\sqrt{3ab}}{\sqrt{3}}+\frac{a}{3}\right)+\left(\frac{2a}{3}-\frac{2.\sqrt{a}.\sqrt{2}.\sqrt{3}}{\sqrt{3}.\sqrt{2}}+\frac{3}{2}\right)-\frac{1}{2}\)

\(=\left(\sqrt{3b}-\frac{\sqrt{a}}{\sqrt{3}}\right)^2+\left(\sqrt{\frac{2a}{3}}-\sqrt{\frac{3}{2}}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=\frac{9}{4}\\b=\frac{1}{4}\end{cases}}\)

9 tháng 12 2016

I don't know because I don't understand!

29 tháng 3 2020

Đặt \(P=a-2\sqrt{ab}+3b-2\sqrt{a}+1\)

\(=a-2\sqrt{a}\left(\sqrt{b}+1\right)+b+2\sqrt{b}+1+2b-2\sqrt{b}\)

\(=\left(\sqrt{a}-\sqrt{b}-1\right)^2+2\left(b-\sqrt{b}+\frac{1}{4}\right)-\frac{1}{2}\)

\(=\left(\sqrt{a}-\sqrt{b}-1\right)^2+2\left(\sqrt{b}-\frac{1}{2}\right)^2-\frac{1}{2}\ge\frac{1}{2}\)

Dấu "=" \(\Leftrightarrow b=\frac{1}{4};a=\frac{9}{4}\)

20 tháng 3 2016

\(P=3b-2\sqrt{ab}+\frac{a}{3}+\frac{2a}{3}-2\sqrt{a}+\frac{3}{2}-\frac{1}{2}\)

\(P=\left(\sqrt{3b}-\sqrt{\frac{a}{3}}\right)^2+\left(\sqrt{\frac{2}{3}a}-\sqrt{\frac{3}{2}}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)

Đẳng thức xảy ra (Bạn tự giải)

(nhớ k để làm tiếp)

6 tháng 8 2020

\(P=\frac{3a+3b+2c}{\sqrt{6\left(a^2+5\right)}+\sqrt{6\left(b^2+5\right)}+\sqrt{c^2+5}}\)

\(=\frac{3a+3b+2c}{\sqrt{6\left(a^2+ab+bc+ca\right)}+\sqrt{6\left(b^2+ab+bc+ca\right)}+\sqrt{c^2+ab+bc+ca}}\)(Do ab + bc + ca = 5)

\(=\frac{3a+3b+2c}{\sqrt{6\left(a+b\right)\left(a+c\right)}+\sqrt{6\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng BĐT AM - GM, ta được:

\(\sqrt{6\left(a+b\right)\left(a+c\right)}=2\sqrt{\frac{6}{4}\left(a+b\right)\left(a+c\right)}\)\(\le\frac{6}{4}\left(a+b\right)+\left(a+c\right)=\frac{5}{2}a+\frac{6}{4}b+c\)

\(\sqrt{6\left(b+a\right)\left(b+c\right)}=2\sqrt{\frac{6}{4}\left(b+a\right)\left(b+c\right)}\)\(\le\frac{6}{4}\left(a+b\right)+\left(b+c\right)=\frac{6}{4}a+\frac{5}{2}b+c\)

\(\sqrt{\left(c+a\right)\left(c+b\right)}\le\frac{\left(c+a\right)+\left(c+b\right)}{2}=c+\frac{a}{2}+\frac{b}{2}\)

Cộng theo vế của 3 BĐT trên, ta được: \(\sqrt{6\left(a+b\right)\left(a+c\right)}+\sqrt{6\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\)\(\le\frac{9}{2}a+\frac{9}{2}b+3c\)

\(\Rightarrow\frac{3a+3b+2c}{\sqrt{6\left(a+b\right)\left(a+c\right)}+\sqrt{6\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}}\)\(\ge\frac{3a+3b+2c}{\frac{9}{2}a+\frac{9}{2}b+3c}=\frac{2}{3}\)

Đẳng thức xảy ra khi \(a=b=1;c=2\)

a: \(A=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)

trình bày rõ ràng ra bạn còn câu b nữa

20 tháng 8 2023

Ta có \(ab+bc+ca=3abc\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) thì ta có \(x,y,z>0;x+y+z=3\) và 

\(\sqrt{\dfrac{a}{3b^2c^2+abc}}=\sqrt{\dfrac{\dfrac{1}{x}}{3.\dfrac{1}{y^2z^2}+\dfrac{1}{xyz}}}=\sqrt{\dfrac{\dfrac{1}{x}}{\dfrac{3x+yz}{xy^2z^2}}}=\sqrt{\dfrac{y^2z^2}{3x+yz}}\) \(=\dfrac{yz}{\sqrt{3x+yz}}\) \(=\dfrac{yz}{\sqrt{x\left(x+y+z\right)+yz}}\) \(=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

Do đó \(T=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)

Lại có \(\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}\)

Lập 2 BĐT tương tự rồi cộng theo vế, ta được \(T\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}+\dfrac{zx}{2\left(y+z\right)}+\dfrac{zx}{2\left(y+x\right)}\) \(+\dfrac{xy}{2\left(z+x\right)}+\dfrac{xy}{2\left(z+y\right)}\)

\(T\le\dfrac{yz+zx}{2\left(x+y\right)}+\dfrac{xy+zx}{2\left(y+z\right)}+\dfrac{xy+yz}{2\left(z+x\right)}\)

\(T\le\dfrac{x+y+z}{2}\) (do \(x+y+z=3\))

\(T\le\dfrac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\) \(\Leftrightarrow a=b=c=1\)

Vậy \(maxT=\dfrac{3}{2}\), xảy ra khi \(a=b=c=1\)

 (Mình muốn gửi lời cảm ơn tới bạn Nguyễn Đức Trí vì ý tưởng của bài này chính là bài mình vừa hỏi lúc nãy trên diễn đàn. Cảm ơn bạn Trí rất nhiều vì đã giúp mình có được lời giải này.)

20 tháng 8 2023

 Bạn Lê Song Phương xem lại dùm nhé, thanks!

\(...\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\)

\(...\Rightarrow T\le2.3=6\)

\(\Rightarrow GTLN\left(T\right)=6\left(tạia=b=c=1\right)\)