K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016

\(P=3b-2\sqrt{ab}+\frac{a}{3}+\frac{2a}{3}-2\sqrt{a}+\frac{3}{2}-\frac{1}{2}\)

\(P=\left(\sqrt{3b}-\sqrt{\frac{a}{3}}\right)^2+\left(\sqrt{\frac{2}{3}a}-\sqrt{\frac{3}{2}}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)

Đẳng thức xảy ra (Bạn tự giải)

(nhớ k để làm tiếp)

1 tháng 6 2019

Ta có \(\sqrt{3b\left(a+2b\right)}\le\frac{1}{2}\left(3b+a+2b\right)=\frac{1}{2}\left(a+5b\right)\)

        \(\sqrt{3a\left(b+2a\right)}\le\frac{1}{2}\left(5a+b\right)\)

=> \(P\le\frac{1}{2}\left(a^2+b^2+10ab\right)\)

Mà \(ab\le\frac{1}{2}\left(a^2+b^2\right)\le\frac{1}{2}.2=1\)

=> \(P\le\frac{1}{2}\left(2+10\right)=6\)

Vậy MaxP=6 khi a=b=1

2 tháng 6 2019

Cảm ơn bạn Trần Phúc Khang ạ.

2 tháng 6 2017

sai đề ở căn thứ 3

2 tháng 6 2017

\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)

giúp mình với ạ =))

9 tháng 12 2016

\(3b+a-2\sqrt{ab}-2\sqrt{a}+1\)

\(=\left(3b-\frac{2.\sqrt{3ab}}{\sqrt{3}}+\frac{a}{3}\right)+\left(\frac{2a}{3}-\frac{2.\sqrt{a}.\sqrt{2}.\sqrt{3}}{\sqrt{3}.\sqrt{2}}+\frac{3}{2}\right)-\frac{1}{2}\)

\(=\left(\sqrt{3b}-\frac{\sqrt{a}}{\sqrt{3}}\right)^2+\left(\sqrt{\frac{2a}{3}}-\sqrt{\frac{3}{2}}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=\frac{9}{4}\\b=\frac{1}{4}\end{cases}}\)

9 tháng 12 2016

I don't know because I don't understand!

13 tháng 6 2020

Bài 2:

Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001

=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996

2M= ( a+b-2)2 + (a-1)2 +(b-1)+ 3996

=> MinM = 1998 tại a=b=1

13 tháng 6 2020

Câu 3: 

Ta có: P= x2 +xy+y2 -3.(x+y) + 3

=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)

2P = ( x+y-2)2 +(x-1)2+(y-1)2

=> Min= 0 tại x=y=1