Tìm GTNN của a, b, c biết a+(a+1)+(a+2)+...+(a+6)=b+(b+1)+(b+2)+...+(b+8)=c+(c+1)(c+2)+...+(c+10)
(GTNN là giá trị nhỏ nhất)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt :
a + (a+1)+(a+2)+...+(a+6) = b + (b+1)+(b+2)+...+(b+8) = c + (c+1)+(c+2)+...+(c+10) = n
=> 7a + 21 = 9b + 36 = 11c + 55 = n
=> 7(a+3) = 9(b+4) = 11(c+5) = n
Vì a,b,c là các số tự nhiên nên a + 3 , b+4 , c+5 là các số tự nhiên
=> n chia hết cho 7 , 9, 11
Để a,b,c nhỏ nhất
=> n nhỏ nhất
=> n thuộc BCNN(7,9,11)
=> n = 693
Khi đó:
7a + 21 = 9b + 36 = 11c + 55 = 693
Vì 7a + 21 = 693
=> 7a = 672
=>a = 96
Vì 9b + 36 = 693
=>9b = 657
=> b = 73
Vì 11c + 55 = 693
=> 11c = 638
=> c = 58
Vậy a = 96, b = 73, c = 58
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....