Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT: \(Fe_2O_3+3H_2\underrightarrow{t^o}2Fe+3H_2O\)
\(CuO+H_2\underrightarrow{t^o}Cu+H_2O\)
Giả sử: \(\left\{{}\begin{matrix}n_{Fe_2O_3}=x\left(mol\right)\\n_{CuO}=y\left(mol\right)\end{matrix}\right.\)
\(\Rightarrow160x+80y=40\left(1\right)\)
Ta có: \(n_{H_2}=\dfrac{14,56}{22,4}=0,65\left(mol\right)\)
Theo PT: \(n_{H_2}=3n_{Fe_2O_3}+n_{CuO}=3x+y\left(mol\right)\)
⇒ 3x + y = 0,65 (2)
Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}x=0,15\left(mol\right)\\y=0,2\left(mol\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\%m_{Fe_2O_3}=\dfrac{0,15.160}{40}.100\%=60\%\\\%m_{CuO}=40\%\end{matrix}\right.\)
Bạn tham khảo nhé!
Bài 3:
b: \(B_1=-\left|2x-3\right|+2\le2\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
\(B_2=-\left|x+4\right|+5\le5\forall x\)
Dấu '=' xảy ra khi x=-4
Bài 3:
b) Xét số \(-B_3=6+\left|x+4\right|\ge6\Rightarrow B_3\le-6\)
Dấu '=' xảy ra \(\Leftrightarrow x=-4\)
5.
\(n_{Na}=a\left(mol\right)\)
\(Na+H_2O\rightarrow NaOH+\dfrac{1}{2}H_2\)
\(a...............a.....0.5a\)
\(m_{\text{dung dịch sau phản ứng}}=23a+500-0.5a\cdot2=22a+500\left(g\right)\)
\(m_{NaOH}=40a\left(g\right)\)
\(C\%_{NaOH}=\dfrac{40a}{22a+500}\cdot100\%=20\%\)
\(\Rightarrow a=2.8\)
\(b.\)
\(n_{H^+}=10^{-3}\cdot V\cdot\left(1+0.5\cdot2\right)=2\cdot10^{-3}V\left(mol\right)\)
\(\Rightarrow n_{NaOH}=2\cdot10^{-3}V=2.8\left(mol\right)\)
\(\Rightarrow V=1400\)
1. On the ocean
2. Yes
3. do house work , cleaning the floor , cooking meals , washing clothes , feeding his pets .
1. Đề lỗi
2.
Đường tròn (C) tâm \(I\left(1;-1\right)\) bán kính \(R=\sqrt{1^2+\left(-1\right)^2-\left(-7\right)}=3\)
a.
\(d\left(I;D\right)=\dfrac{\left|1-1-4\right|}{\sqrt{1^2+1^2}}=2\sqrt{2}< R\)
\(\Rightarrow D\) cắt (C) tại 2 điểm phân biệt
b.
Gọi H là trung điểm MN \(\Rightarrow IH\perp MN\Rightarrow IH=d\left(I;D\right)=2\sqrt{2}\)
ÁP dụng định lý Pitago trong tam giác vuông IHM:
\(HM=\sqrt{IM^2-IH^2}=\sqrt{R^2-IH^2}=\sqrt{9-8}=1\)
\(\Rightarrow MN=2MH=2\)
\(S_{IMN}=\dfrac{1}{2}IH.MN=2\sqrt{2}\)
3.
Đường tròn (C) tâm \(I\left(2;3\right)\) bán kính \(R=\sqrt{2}\)
Đường còn (C') tâm \(I'\left(1;2\right)\) bán kính \(R'=2\sqrt{2}\)
Gọi tiếp tuyến chung của (C) và (C') là (d) có pt: \(ax+by+c=0\) với \(a^2+b^2\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}d\left(I;\left(d\right)\right)=R\\d\left(I';\left(d\right)\right)=R'\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{\left|2a+3b+c\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\left(1\right)\\\dfrac{\left|a+2b+c\right|}{\sqrt{a^2+b^2}}=2\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow\left|a+2b+c\right|=2\left|2a+3b+c\right|\)
\(\Rightarrow\left[{}\begin{matrix}4a+6b+2c=a+2b+c\\4a+6b+2c=-a-2b-c\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3a+4b+c=0\\5a+8b+3c=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}c=-3a-4b\\c=-\dfrac{5a+8b}{3}\end{matrix}\right.\)
Thế vào (1):
\(\Rightarrow\left[{}\begin{matrix}\dfrac{\left|2a+3b-3a-4b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\\\dfrac{\left|2a+3b-\dfrac{5a+8b}{3}\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left|a+b\right|=\sqrt{2\left(a^2+b^2\right)}\\\left|a+b\right|=3\sqrt{2\left(a^2+b^2\right)}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a^2+2ab+b^2=2a^2+2b^2\\a^2+2ab+b^2=18a^2+18b^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(a-b\right)^2=0\\17a^2-2ab+17b^2=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow a=b\) \(\Rightarrow c=-3a-4b=-7a\)
Thế vào pt (d):
\(ax+ay-7a=0\Leftrightarrow x+y-7=0\)
#muon roi ma sao con
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\right)=0\Leftrightarrow x=-100\)
Vậy x = -100
Lỗi sai
1 C => which
2 C => stopped
3 A => bored
4 B => most
5 B => had stopped
6 C => that
7 C => had knowm
8 A => hadn't been
9 D => learned about
10 B => bỏ
11 B => have come
12 A => would have gone
13 C => would have returned
14 C => knew