Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
b: x1^2+x2^2=12
=>(x1+x2)^2-2x1x2=12
=>(2m+2)^2-4m=12
=>4m^2+4m+4=12
=>m^2+m+1=3
=>(m+2)(m-1)=0
=>m=1;m=-2
2:
b: =>|x1|-|x2|=m+3-|-1|=m+2
=>x1^2+x2^2-2|x1x2|=m+2
=>(x1+x2)^2-2x1x2-2|x1x2|=m+2
=>(2m)^2-2(-1)-2|-1|=m+2
=>4m^2-m-2=0
=>m=(1+căn 33)/8; m=(1-căn 33)/8
1. \(P=\dfrac{\sqrt{x}+4}{\sqrt{x}-1}:\left(\dfrac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{2}{\sqrt{x}+3}\right)\)
\(P=\dfrac{\sqrt{x}+4}{\sqrt{x}-1}:\left(\dfrac{3\sqrt{x}+1-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\right)\)
\(P=\dfrac{\sqrt{x}+4}{\sqrt{x}-1}:\left(\dfrac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\right)\)
\(P=\dfrac{\sqrt{x}+4}{\sqrt{x}-1}:\left(\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\right)\)
\(P=\dfrac{\sqrt{x}+4}{\sqrt{x}-1}.\sqrt{x}-1\)
P=\(\sqrt{x}+4\)
b) \(P=\dfrac{x}{4}+5\)
⇔\(\sqrt{x}+4=\dfrac{x}{4}+5\)
⇔\(\dfrac{x}{4}-\sqrt{x}+1=0\)
⇔\(x-4\sqrt{x}+4=0\)
⇔\(\left(\sqrt{x}-2\right)^2=0\)
⇔\(\sqrt{x}-2=0\)
⇔\(\sqrt{x}=2\)
⇔\(x=4\)
Vậy x=4 thì P=\(\dfrac{x}{4}+5\)
Bài 1:
a) Ta có: \(P=\dfrac{\sqrt{x}+4}{\sqrt{x}-1}:\left(\dfrac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\dfrac{2}{\sqrt{x}+3}\right)\)
\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-1}:\left(\dfrac{3\sqrt{x}+1}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-1}:\dfrac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\sqrt{x}+4\)
b) Ta có: \(P=\dfrac{x}{4}+5\)
\(\Leftrightarrow\sqrt{x}+4=\dfrac{1}{4}x+5\)
\(\Leftrightarrow\dfrac{1}{4}x-\sqrt{x}+1=0\)
\(\Leftrightarrow x-4\sqrt{x}+4=0\)
\(\Leftrightarrow x=4\)
Với \(x\ge\dfrac{5}{2}\)có: \(A=x+\sqrt{2x-5}\ge\dfrac{5}{2}+0=\dfrac{5}{2}\)
Dấu '=' xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
\(\Rightarrow A_{min}=\dfrac{5}{2}\)
Câu 15:
Gọi $x_0$ là nghiệm chung của 2 pt thì:
\(\left\{\begin{matrix}
x_0^2+ax_0+1=0\\
x_0^2-x_0-a=0\end{matrix}\right.\Rightarrow x_0(a+1)+(a+1)=0\)
\(\Leftrightarrow (x_0+1)(a+1)=0\)
Hiển nhiên $a\neq -1$ để 2 PT không trùng nhau. Do đó $x_0=-1$ là nghiệm chung của 2 PT
Thay vào:
$(-1)^2+a(-1)+1=0$
$\Leftrightarrow 1-a+1=0\Rightarrow a=2$
Đáp án C.
Câu 16:
D sai. Trong tam giác vuông tại $A$ là $ABC$, $\cos (90^0-\widehat{B})=\cos \widehat{C}$ và không có cơ sở để khẳng định $\cos \widehat{C}=\sin \widehat{C}$
\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x}\)\(\left(ĐK:x\ne\pm3\right)\)
\(\Leftrightarrow\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}+\sqrt{x}+3+11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow\dfrac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
Chúc bạn học tốt ^.^
\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{3-11}{9-x}\left(x\ge0,x\ne9\right)\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(\dfrac{3x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
\(\sqrt{x-2}=3\left(x\ge2\right)\\ \Leftrightarrow x-2=9\Leftrightarrow x=11\left(tm\right)\\ \sqrt{4x^2}+4x+1=3\Leftrightarrow\left|2x\right|=2-4x\\ \Leftrightarrow\left[{}\begin{matrix}2x=2-4x\left(x\ge0\right)\\2x=4x-2\left(x< 0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{3}\)