Tính phép tính sau:
a,A= 1 + 2^2 + 2^3 +.......+ 2^63
b,B= 1 + 3 + 3^2 + 3^3 +.......+ 3^2000
c,C= 2 + 2^3 + 2^5 + 2^7 +........+ 2^2009
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -1 - 2 - 3 - 4 - 5 -.............- 2009 - 2010
SCSH: ( 2010 - 1 ) : 1 + 1 = 2010
tỔNG: ( 2010 + 1 ) . 2010 : 2 = 2021055
b) 1 - 3 + 5 - 7 +...............+ 2005 - 2007 + 2009 - 2011
SCSH: ( 2011 - 1 ) : 2 + 1 = 1006
tỔNG: ( 2011 + 1 ) . 1006 : 2 = 1012036
c) 1 - 2 - 3 + 4 + 5 - 6 - 7 +..........................+ 1997 - 1998 - 1999 + 2000 + 2001
SCSH: ( 2001 - 1 ) : 1 + 1 = 2001
tỔNG: ( 2001 + 1 ) . 2001 : 2 = 2003001
Hk tốt,
k nhé
Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha
1, 7A = 7+7^2+7^3+....+7^2008
6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1
=> A = (7^2008-1)/6
Tk mk nha
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)
\(\Rightarrow6A=7^{2008}-1\)
\(\Rightarrow A=\frac{7^{2008}-1}{6}\)
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
B1 : S = 1 + 2 + 2^2 + 2^3 + ... + 2^2008 / 1 - 2^2009
Đặt A = 1 + 2 + 2^2 + 2^3 + ... + 2^2008
2A = 2 + 2^2 + 2^3 + 2^3 + 2^4 + ... + 2^2009
2A - A = ( 2 + 2^2 + 2^3 + 2^4 + ... + 2^2009 ) - ( 1 + 2 + 2^2 + 2^3 + ... + 2^2008 )
A = 2^2009 - 1
S = 2^2009 - 1 / 1 - 2^2009
S = -1
2:
a: =4+3/8+5+2/3
=9+3/8+2/3
=216/24+9/24+16/24
=216/24+25/24
=241/24
b; =2+3/8+1+1/4+3+6/7
=6+3/8+1/4+6/7
=6+5/8+6/7
=419/56
c: \(=2+\dfrac{3}{8}-1-\dfrac{1}{4}+5+\dfrac{1}{3}\)
=6+3/8-1/4+1/3
=6+1/8+1/3
=6+11/24
=155/24
d: \(=3+\dfrac{5}{6}+6\cdot\dfrac{13}{6}\)
=3+13+5/6
=16+5/6
=101/6
e: =3+1/2+4+5/7-5-5/14
=3+4-5+1/2+5/7-5/14
=2+7/14+10/14-5/14
=2+12/14
=2+6/7=20/7
f: =9/2+1/2:11/2
=9/2+1/11
=99/22+2/22=101/22
2:
a: =4+3/8+5+2/3
=9+3/8+2/3
=216/24+9/24+16/24
=216/24+25/24
=241/24
b; =2+3/8+1+1/4+3+6/7
=6+3/8+1/4+6/7
=6+5/8+6/7
=419/56
c: \(=2+\dfrac{3}{8}-1-\dfrac{1}{4}+5+\dfrac{1}{3}\)
=6+3/8-1/4+1/3
=6+1/8+1/3
=6+11/24
=155/24
d: \(=3+\dfrac{5}{6}+6\cdot\dfrac{13}{6}\)
=3+13+5/6
=16+5/6
=101/6
e: =3+1/2+4+5/7-5-5/14
=3+4-5+1/2+5/7-5/14
=2+7/14+10/14-5/14
=2+12/14
=2+6/7=20/7
f: =9/2+1/2:11/2
=9/2+1/11
=99/22+2/22=101/22
1)
g) \(24+5x\text{=}7^5:7^3\)
\(24+5x\text{=}7^{5-3}\)
\(24+5x\text{=}7^2\text{=}49\)
\(5x\text{=}49-24\text{=}25\)
\(x\text{=}5\)
h) \(x:2^2\text{=}2^3\)
\(x\text{=}2^3.2^2\)
\(x\text{=}2^5\text{=}32\)
2)
a) \(2^{10}.8.2^3\text{=}2^{10}.2^3.2^3\text{=}2^{10+3+3}\text{=}2^{16}\)
\(b)3^5:27\text{=}3^5:3^3\text{=}3^{5-3}\text{=}3^2\)
\(c)5^2.125\text{=}5^2.5^3\text{=}5^{2+3}\text{=}5^5\)
\(d)6^6:36\text{=}6^6:6^2\text{=}6^{6-2}\text{=}6^4\)
1.
g) \(24+5x=7^5:7^3\left(=7^{5-3}\right)\) -> Trong ngoặc ko cần viết nha
\(24+5x=7^2=49\)
\(5x=49-24\)
\(5x=25\)
\(x=25:5\)
\(=>x=5\)
h) \(x:2^2=2^3\)
\(x=2^3.2^2\)
\(=>x=2^5\)
2.
a) \(2^{10}.8.2^3=2^{10}.\left(2^3\right)2^3=2^{10+3+3}=2^{16}\)
b) \(3^5:27=3^5:\left(3^3\right)=3^{5-3}=3^2\)
c) \(5^2.125=5^2.\left(5^3\right)=5^{2+3}=5^5\)
d) \(6^6:36=6^6:\left(6^2\right)=6^{6-2}=6^4\)
Công thức:
\(a^m.a^n=a^{m+n}\)
\(a^m:a^n=a^{m-n}\)
\(#Wendy.Dang\)
a, \(2A=2+2^3+2^4+...+2^{64}\Rightarrow2A-A=2+2^3+...+2^{64}-1-2^2-2^3-...-2^{63}=1-2^2+2^{64}=-3+2^{64}\)
b, \(3B=3+3^2+...+3^{2001}\Rightarrow3B-B=3+...+3^{2001}-1-3-...-3^{2000}=-1+3^{2001}\Rightarrow B=\dfrac{-1+3^{2001}}{2}\)
c, tương tự