So sánh:333⁴⁴⁴ và 444³³³
Giúp mik v
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ : 333444= 3334.111=(3334)111=12296370321111 (1)
444333=4443.111=(4443)111=87528384111 (2)
TỪ (1) VÀ (2) => 333444 > 444333
\(A=333^{444}=111^{444}.3^{4.111}=111^{444}.81^{111}\)
\(B=444^{333}=111^{333}.4^{3.111}=111^{333}.64^{111}\)
Ta thấy *)444>333 nên \(111^{444}>111^{333}\)(1)
*)81>64 nên \(81^{111}>64^{111}\)(2)
Từ (1) và (2) suy ra \(111^{444}.81^{111}>111^{333}.64^{111}\)
Vậy A>B
ta có :
\(333^{444}=333^{4.111}=\left(333^4\right)^{111}\)
\(444^{333}=444^{3.111}=\left(444^3\right)^{111}\)
Vì hai số đó có cùng số mũ nên ta so sánh \(333^4\text{và}444^3\)
\(333^4=\left(3.111\right)^4=3^4.111^4=81.111^4\)
\(444^3=\left(4.111\right)^3=4^3.111^3=64.111^3\)
Vì \(81.111^4>64.111^3\)nên \(333^{444}>444^{333}\)
Ta có : 333444 và 8111*111444
Rút gọn cả 2 vế cho 111444 ta có phép so sánh:
3444 và 8111
ta có 8111=2333
=> so sánh 3444 và 2333 => 3444> 2333
vậy 333444>8111*111444
Ta có: 333444=111444.3444
444333=111333.4333
Tách: 3444=(34)111=81111<=>4333=(43)111=64111
Mà: 111444>111333(1)
81111>64111 hay: (34)111>(43)111(2)
Từ (1) và (2) ta có:333444>444333
a: \(5^{300}=25^{150}\)
\(3^{450}=27^{150}\)
mà 25<27
nên \(5^{300}< 3^{450}\)
a: 5300=251505300=25150
3450=271503450=27150
mà 25<27
nên 5300<3450
Ta có: 333^444= 111^444 x 3^444
444^333 = 111^333 x 4^333
Tách: 3^444 = (3^4)^111 =81^111 <=>4^333 = (4^3)^111 = 64^111
Mà: {111^444 > 111^333 (1)
{81^111 > 64^111 hay: (3^4)^111 > (4^3)^111 (2)
Từ (1) và (2) ta có:333^444 > 444^333
Ta có: \(81=3^4>4^3=64\)
\(\Rightarrow4^3\cdot111^3< 3^4\cdot111^3< 3^4\cdot111^4\)
\(\Rightarrow444^3< 333^4\)
\(\Rightarrow\left(444^3\right)^{111}< \left(333^4\right)^{111}\)
\(\Rightarrow444^{333}< 333^{444}\)
\(\Rightarrow-333^{444}< -444^{333}\)
\(333^{444}=\left(111.3\right)^{444}=111^{444}.3^{444}\)
\(444^{333}=\left(111.4\right)^{333}=111^{333}.4^{333}\)
mà \(3^{444}=3^{4.111}=81^{111}\)
\(4^{333}=4^{3.111}=64^{111}\)
ta có : \(111^{444}>111^{333}\)
\(81^{111}>64^{111}\)
\(\Rightarrow333^{444}>444^{333}\)
Ta có: \(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}\)
\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}\)
Ta lại có: \(3^{444}=\left(3^4\right)^{111}=81^{111}\)
\(4^{333}=\left(4^3\right)^{111}=64^{111}\)
\(\Rightarrow3^{444}>4^{333}\left(81^{111}>64^{111}\right)\)
Mặt khác: \(111^{444}>111^{333}\)
\(\Rightarrow3^{444}.111^{444}>4^{333}.111^{333}\)
Vậy \(333^{444}>444^{333}\)