K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2023

Trả lời cho bạn đỗ manh tiến

26 tháng 2 2018

bài này đúng là thị của phi...vô của lí ... :))

1 tháng 10 2023

a) \(0,25-\dfrac{2}{3}+1\dfrac{1}{4}\)

\(=\dfrac{1}{4}-\dfrac{2}{3}+\dfrac{5}{4}\)

\(=\dfrac{3}{12}-\dfrac{8}{12}+\dfrac{15}{12}\)

\(=\dfrac{10}{12}\)

\(=\dfrac{5}{6}\)

\(---\)

b) \(\dfrac{3^2}{2}:\dfrac{1}{4}+\dfrac{3}{4}\cdot2010\)

\(=\dfrac{9}{2}\cdot4+\dfrac{3015}{2}\)

\(=18+\dfrac{3015}{2}\)

\(=\dfrac{36}{2}+\dfrac{3015}{2}\)

\(=\dfrac{3051}{2}\)

\(---\)

c) \(\left\{\left[\left(\dfrac{1}{25}-0,6\right)^2:\dfrac{49}{125}\right]\cdot\dfrac{5}{6}\right\}-\left[\left(\dfrac{-1}{3}\right)+\dfrac{1}{2}\right]\)

\(=\left\{\left[\left(-\dfrac{14}{25}\right)^2:\dfrac{49}{125}\right]\cdot\dfrac{5}{6}\right\}-\left[\left(\dfrac{-2}{6}\right)+\dfrac{3}{6}\right]\)

\(=\left\{\left[\dfrac{196}{625}\cdot\dfrac{125}{49}\right]\cdot\dfrac{5}{6}\right\}-\dfrac{1}{6}\)

\(=\left\{\dfrac{4}{5}\cdot\dfrac{5}{6}\right\}-\dfrac{1}{6}\)

\(=\dfrac{4}{6}-\dfrac{1}{6}\)

\(=\dfrac{3}{6}\)

\(=\dfrac{1}{2}\)

\(---\)

d) \(\left(-\dfrac{1}{2}-\dfrac{1}{3}\right)^2:\left[\left(\dfrac{-5}{36}\right)-\left(\dfrac{-5}{36}\right)^0\right]\)

\(=\left(-\dfrac{3}{6}-\dfrac{2}{6}\right)^2:\left[-\dfrac{5}{36}-1\right]\)

\(=\left(-\dfrac{5}{6}\right)^2:\left[-\dfrac{5}{36}-\dfrac{36}{36}\right]\)

\(=\dfrac{25}{36}:\left(\dfrac{-41}{36}\right)\)

\(=\dfrac{25}{36}\cdot\left(\dfrac{-36}{41}\right)\)

\(=-\dfrac{25}{41}\)

#\(Toru\)

1 tháng 10 2023

cảm ơn nhiều nha vừa kịp giờ lun

BT1: CMR: a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\) b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\) c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\) d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\) e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\) f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\) BT2: Tính tổng a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\) b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\) BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\) CMR: 1 < S <...
Đọc tiếp

BT1: CMR:

a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)

b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)

c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)

d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)

e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)

f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)

BT2: Tính tổng

a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)

BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)

CMR: 1 < S < 2

1
22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

28 tháng 6 2017

a

= { 1*( 1+1/2+1/3+1/4) } / { 1 * ( 1-1/2 +1/3-1/4)} : { 3*(1+1/2+1/3+1/4)} / { 2*( 1-1/2 +1/3-1/4)}

Sau đó bn tự tính ra nhé cứ tính nhu bình thường sẽ ra.

Mà mình thấy máy câu này yêu cầu tính chứ có bảo tính theo cách hợp lí đâu? Vì thế bn cứ lấy máy tính tính như bình thường là được .

20 tháng 7 2017

Kết quả là : C1=\(\dfrac{2}{3}\)

c: Ta có: \(\dfrac{1}{3}-\dfrac{7}{8}x=\dfrac{1}{4}\)

\(\Leftrightarrow x\cdot\dfrac{7}{8}=\dfrac{1}{12}\)

\(\Leftrightarrow x=\dfrac{1}{12}\cdot\dfrac{8}{7}=\dfrac{2}{21}\)

d: Ta có: \(\dfrac{3}{2}x+\dfrac{1}{7}=\dfrac{7}{8}\cdot\dfrac{64}{49}\)

\(\Leftrightarrow x\cdot\dfrac{3}{2}=1\)

hay \(x=\dfrac{2}{3}\)

23 tháng 2 2023

a, \(\dfrac{x-1}{21}\) = \(\dfrac{3}{x+1}\)

   ( x-1)(x+1) = 21.3

    x2 + x - x -1 = 63

     x2                = 63 + 1

     x2               = 64

    x = + - 8

b, 2\(\dfrac{1}{2}\)x + x = 2\(\dfrac{1}{17}\)

        x( \(\dfrac{5}{2}\) + 1) = \(\dfrac{35}{17}\)

       x              = \(\dfrac{35}{17}\) : ( \(\dfrac{5}{2}\)+1)

       x             = \(\dfrac{35}{17}\) x \(\dfrac{2}{7}\)

       x            = \(\dfrac{10}{17}\)

c, (x + \(\dfrac{1}{4}\) - \(\dfrac{2}{3}\) ) : ( 2 + \(\dfrac{1}{6}\) - \(\dfrac{1}{4}\)) = \(\dfrac{7}{46}\)

   (x  - \(\dfrac{5}{12}\)):  \(\dfrac{23}{12}\)                     =   \(\dfrac{7}{46}\)

  (x - \(\dfrac{5}{12}\))                               =   \(\dfrac{7}{46}\) x \(\dfrac{23}{12}\)

  x   - \(\dfrac{5}{12}\)                                =    \(\dfrac{7}{12}\)

 x                                            =    \(\dfrac{7}{12}\) + \(\dfrac{5}{12}\)

x                                             =     1

d, 2\(\dfrac{1}{3}\)x - 1\(\dfrac{3}{4}\)x + \(2\dfrac{2}{3}\)  = 3\(\dfrac{3}{5}\)

   x( \(\dfrac{7}{3}\) - \(\dfrac{7}{4}\)) + \(\dfrac{8}{3}\)      =  \(\dfrac{18}{5}\)

   x\(\dfrac{7}{12}\)                    = \(\dfrac{18}{5}\) - \(\dfrac{8}{3}\)

   x\(\dfrac{7}{12}\)                   = \(\dfrac{14}{15}\)

  x                         = \(\dfrac{14}{15}\) : \(\dfrac{7}{12}\)

 x                          = \(\dfrac{8}{5}\)

 

 

 

25 tháng 4 2023

b\()\)

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 3/4

25 tháng 4 2023

Tương tự như vậy với câu a\()\)

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 1/2

1: Ta có: \(\dfrac{5x+1}{8}-\dfrac{x-2}{4}=\dfrac{1}{2}\)

\(\Leftrightarrow5x+1-2\left(x-2\right)=4\)

\(\Leftrightarrow5x+1-2x+4=4\)

\(\Leftrightarrow3x=-1\)

hay \(x=-\dfrac{1}{3}\)

2: Ta có: \(\dfrac{x+3}{4}+\dfrac{1-3x}{3}=\dfrac{-x+1}{18}\)

\(\Leftrightarrow9x+27+12-36x=-2x+2\)

\(\Leftrightarrow-27x+2x=2-39\)

hay \(x=\dfrac{37}{25}\)

3: Ta có: \(\dfrac{x+2}{4}-\dfrac{5x}{6}=\dfrac{1-x}{3}\)

\(\Leftrightarrow3x+6-10x=4-4x\)

\(\Leftrightarrow-7x+4x=4-6=-2\)

hay \(x=\dfrac{2}{3}\)

4: Ta có: \(\dfrac{x-3}{2}-\dfrac{x+1}{10}=\dfrac{x-2}{5}\)

\(\Leftrightarrow5x-15-x-1=2x-4\)

\(\Leftrightarrow4x-2x=-4+16=12\)

hay x=6

5: Ta có: \(\dfrac{4x+1}{4}-\dfrac{9x-5}{12}+\dfrac{x-2}{3}=0\)

\(\Leftrightarrow12x+3-9x+5+4x-8=0\)

\(\Leftrightarrow7x=0\)

hay x=0

1: Sửa đề: 2/x+2

\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+2}=\dfrac{3}{2-x}\)

=>\(\dfrac{2x+1+2x-4}{x^2-4}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

=>4x-3=-3x-6

=>7x=-3

=>x=-3/7(nhận)

2: \(\Leftrightarrow\dfrac{\left(3x+1\right)\left(3-x\right)+\left(3+x\right)\left(1-3x\right)}{\left(1-3x\right)\left(3-x\right)}=2\)

=>9x-3x^2+3-x+3-9x+x-3x^2=2(3x-1)(x-3)

=>-6x^2+6=2(3x^2-10x+3)

=>-6x^2+6=6x^2-20x+6

=>-12x^2+20x=0

=>-4x(3x-5)=0

=>x=5/3(nhận) hoặc x=0(nhận)

3: \(\Leftrightarrow x\cdot\dfrac{8}{3}-\dfrac{2}{3}=1+\dfrac{5}{4}-\dfrac{1}{2}x\)

=>x*19/6=35/12

=>x=35/38