K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2022

`(5x-4)^2-49x^2=0`

`<=>(5x-4-7x)(5x-4+7x)=0`

`<=>(-2x-4)(12x-4)=0`

`<=>` $\left[\begin{matrix} x=-2\\ x=\dfrac{1}{3}\end{matrix}\right.$

Vậy \(S={-2;\dfrac{1}{3}}\)

3 tháng 7 2022

\(\left(5x-4\right)^2=\left(7x\right)^2\)

\(\left[{}\begin{matrix}5x-4=7x\\5x-4=-7x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)

NV
16 tháng 9 2021

\(\Leftrightarrow\left(6x-2\right)^2+\left(5x-2\right)^2-2\left(6x-2\right)\left(5x-2\right)=0\)

\(\Leftrightarrow\left[\left(6x-2\right)-\left(5x-2\right)\right]^2=0\)

\(\Leftrightarrow x^2=0\)

\(\Leftrightarrow x=0\)

18 tháng 10 2020

5x+2x=6 mũ 2 - 5 mũ 0 

5x + 2x = 62 - 50

=> 7x = 36 - 1

=> 7x = 35

=> x = 35 : 7 = 5

18 tháng 10 2020

\(5x+2x=6^2-5^0\)

\(\left(5+2\right)x=36-\left(5^1\div5^1\right)\)

\(7x=36-1\)

\(7x=35\)

\(x=5\)

18 tháng 8 2021

a, \(16x^2-9\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(4x\right)^2-\left(3x+3\right)^2=0\Leftrightarrow\left(4x-3x-3\right)\left(4x+2x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(6x+3\right)=0\Leftrightarrow x=-\frac{1}{2};x=3\)

b, \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)

\(\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow x=-2;x=\frac{1}{3}\)

c, \(5x^3-20x=0\Leftrightarrow5x\left(x^2-4\right)=0\)

\(\Leftrightarrow5x\left(x-2\right)\left(x+2\right)=0\Leftrightarrow x=0;x=\pm2\)

1: Ta có: \(16x^2-9\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{7}{3}\end{matrix}\right.\)

2: Ta có: \(\left(5x-4\right)^2-49x^2=0\)

\(\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)

\(\Leftrightarrow\left(2x+4\right)\left(12x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)

3: Ta có: \(5x^3-20x=0\)

\(\Leftrightarrow5x\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

1 tháng 1 2017

_không có nghiệm bạn ơi _

<=> 5x2 + 7y2 =-100

Mà 5x2 >= 0 với mọi x thuộc R; 5y2 => 0 với mọi y thuộc R

1 tháng 1 2017

Có người giải rồi nhé

6 tháng 11 2021

\(a,\Leftrightarrow\left(x-9\right)^2-2\left(x-9\right)+1=0\\ \Leftrightarrow\left(x-9-1\right)^2=0\Leftrightarrow x=10\\ b,Sửa:49x^2-14x\sqrt{5}+5=0\\ \Leftrightarrow\left(7x-\sqrt{5}\right)^2=0\Leftrightarrow x=\dfrac{\sqrt{5}}{7}\)

2 tháng 8 2019

a) \(x^2-36=0\)

\(\Leftrightarrow x^2=36\)

\(\Leftrightarrow x=\pm\sqrt{36}=\pm6\)

2 tháng 8 2019

b) \(\left(3x-5\right)^2-\left(x+6\right)^2=0\)

\(\Leftrightarrow\left(3x-5-x-6\right)\left(3x-5+x+6\right)=0\)

\(\Leftrightarrow\left(2x-11\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{11}{2}\\x=\frac{-1}{4}\end{cases}}\)

10 tháng 5 2022

\(\Rightarrow A^3=5\sqrt{2}-7-3\sqrt[3]{5\sqrt{2}-7}^2.\sqrt[3]{5\sqrt{2}+7}+3\sqrt[3]{5\sqrt{2}-7}.\sqrt[3]{5\sqrt{2}+7}^2-5\sqrt{2}-7=-14-3.\sqrt[3]{\left(5\sqrt{2}-7\right)\left(5\sqrt{2}+7\right)}\left[\sqrt[3]{5\sqrt{2}-7}-\sqrt[3]{5\sqrt{2}+7}\right]=-14-3\sqrt[3]{1}.A=-14-3A\)

\(\Rightarrow A^3=-14-3A\Leftrightarrow A^3+3A+14=0\Leftrightarrow\left(A+2\right)\left(A^2-2A+7\right)=0\Leftrightarrow\left[{}\begin{matrix}A=-2\\A^2-2A+7>0\left(loại\right)\end{matrix}\right.\)