Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 6x2 - 5x + 3 = 2x - 3x(2 - x)
<=> 6x2 - 5x + 3 = 2x - 6x + 3x2
<=> 6x2 - 5x + 3 = -4x + 3x2
<=> 6x2 - 5x + 3 + 4x - 3x2 = 0
<=> 3x2 - x + 3 = 0
=> Pt vô nghiệm
b) 25x2 - 9 = (5x + 3)(2x + 1)
<=> 25x2 - 9 = 10x2 + 5x + 6x + 3
<=> 25x2 - 9 = 10x2 + 11x + 3
<=> 25x2 - 9 - 10x2 - 11x - 3 = 0
<=> 15x2 - 12 - 11x = 0
<=> 15x2 + 9x - 20x - 12 = 0
<=> 3x(5x + 3) - 4(5x + 3) = 0
<=> (5x + 3)(3x - 4) = 0
<=> 5x + 3 = 0 hoặc 3x - 4 = 0
<=> x = -3/5 hoặc x = 4/3
\(A=-x^2+3x-5\)\(=-\dfrac{11}{4}-\left(x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}\right)=-\dfrac{11}{4}-\left(x-\dfrac{3}{2}\right)^2\le-\dfrac{11}{4}\) với mọi x
\(\Rightarrow A_{max}=-\dfrac{11}{4}\Leftrightarrow x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)
\(B=5x-4x^2-3=-\dfrac{23}{16}-\left(4x^2-2.\dfrac{5}{4}.2x+\dfrac{25}{16}\right)\)\(=-\dfrac{23}{16}-\left(2x-\dfrac{5}{4}\right)^2\)\(\le-\dfrac{23}{16}\forall x\)
\(\Rightarrow B_{max}=-\dfrac{23}{16}\Leftrightarrow2x-\dfrac{5}{4}=0\Leftrightarrow x=\dfrac{5}{8}\)
\(C=5-4x-25x^2=\dfrac{129}{25}-\left(25x^2+2.5x.\dfrac{2}{5}+\dfrac{4}{25}\right)\)\(=\dfrac{129}{25}-\left(5x+\dfrac{2}{5}\right)^2\le\dfrac{129}{25}\forall x\)
\(\Rightarrow C_{max}=\dfrac{129}{25}\Leftrightarrow5x+\dfrac{2}{5}=0\Leftrightarrow x=-\dfrac{2}{25}\)
\(D=3x-2x^2=-2\left(x^2-\dfrac{3}{2}x\right)=-2\left(x^2-2.\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{9}{8}\)\(=\dfrac{9}{8}-2\left(x-\dfrac{3}{4}\right)^2\le\dfrac{9}{8}\) với mọi x
\(\Rightarrow D_{max}=\dfrac{9}{8}\Leftrightarrow x-\dfrac{3}{4}=0\Leftrightarrow x=\dfrac{3}{4}\)
\(E=2+6x-\dfrac{1}{4}x^2=-\dfrac{1}{4}\left(x^2-24x\right)+2=-\dfrac{1}{4}\left(x^2-2.12x+144\right)+38\)\(=38-\dfrac{1}{4}\left(x-12\right)^2\le38\forall x\)
\(\Rightarrow E_{max}=38\Leftrightarrow x-12=0\Leftrightarrow x=12\)
\(F=-5x^2+4x=-5\left(x^2-\dfrac{4}{5}x\right)=-5\left(x^2-2.\dfrac{2}{5}x+\dfrac{4}{25}\right)+\dfrac{4}{5}\)\(=\dfrac{4}{5}-5\left(x-\dfrac{2}{5}\right)^2\le\dfrac{4}{5}\forall x\)
\(\Rightarrow F_{max}=\dfrac{4}{5}\Leftrightarrow x-\dfrac{2}{5}=0\Leftrightarrow x=\dfrac{2}{5}\)
a) 6x(3x +5)-2x(9x-2)=17
6x3x+6x5-2x9x-2x(-2)=17
\(18x^2\)+30x-\(18x^2\)+4x=17
\(18x^2-18x^2\)+ 34x=17
0 +34x=17
x=17:34
x=0.5
b)2x(3x-1)-3x(2x+11)-70=0
2x3x-2x1-3x2x+3x11-70=0
\(6x^2-2x-6x^2+33x-70=0\)
-2x+33x-70=0
31x-70=0
31x=0+70
31x=70
x=\(\frac{70}{31}\)
(trong câu c dấu . của mình là nhân nha)
c)5x(2x-3)-4(8-3x)=2(3+5x)
5x2x-5x3-4.8+4.3x=2.3+2.5x
\(10x^2-15x-32+12x=6+10x\)
\(10x^2-15x+12x-10x=6+32\)
\(10x^2-13x=38\)
tạm thời mình bí chổ này thông cảm nha bạn
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
y: Ta có: \(x^2-x-6=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
z: Ta có: \(3x^2-5x-8=0\)
\(\Leftrightarrow\left(3x-8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-1\end{matrix}\right.\)
j: Ta có: \(25x^2-4=0\)
\(\Leftrightarrow\left(5x-2\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
1) \(2x^4+3x^3-x^2+3x+2=0\)
\(\Rightarrow2x^4+x^3+2x^3+x^2-2x^2-x+4x+2=0\)
\(\Rightarrow x^3\left(2x+1\right)+x^2\left(2x+1\right)-x\left(2x+1\right)+2\left(2x+1\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x^3+x^2-x+2\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x^3+2x^2-x^2-2x+x+2\right)=0\)
\(\Rightarrow\left(2x+1\right)\left[x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)\right]=0\)
\(\Rightarrow\left(2x+1\right)\left(x+2\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\\x^2-x+1=0\end{matrix}\right.\)
Ta có:
\(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi x
\(\Rightarrow x^2-x+1\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-2\end{matrix}\right.\)
3) \(\left(x+2\right)^4+\left(x+4\right)^4=16\)
Đặt x + 3 = a, ta được
\(\left(a-1\right)^4+\left(a+1\right)^4=16\)
\(\Rightarrow\left[\left(a-1\right)^2\right]^2+\left[\left(a+1\right)^2\right]^2=16\)
\(\Rightarrow\left(a^2-2a+1\right)^2+\left(a^2+2a+1\right)^2=16\)
\(\Rightarrow a^4+4a^2+1+2a^2-4a^3-4a+a^4+4a^2+1+2a^2+4a^3+4a=16\)
\(\Rightarrow2a^4+2.4a^2+2+2.2a^2=16\)
\(\Rightarrow2a^4+8a^2+4a^2+2=16\)
\(\Rightarrow2a^4+12a^2+2-16=0\)
\(\Rightarrow2a^4+12a^2-14=0\)
\(\Rightarrow2a^4-2a^2+14a^2-14=0\)
\(\Rightarrow2a^2\left(a^2-1\right)+14\left(a^2-1\right)=0\)
\(\Rightarrow\left(a^2-1\right)\left(2a^2+14\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right).2\left(a^2+7\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\\a^2+7=0\end{matrix}\right.\)
Vì \(a^2\ge0\) với mọi a
\(\Rightarrow a^2+7\ge7\) với mọi a
\(\Rightarrow a^2+7\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+3-1=0\\x+3+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
\(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\dfrac{1}{2}.2\left(3x-y\right)\left(3x+y\right)=9x^2-y^2\)
\(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right).\dfrac{1}{2}=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}z\right).2.\dfrac{1}{2}=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)
\(\left(5y-3x\right).\dfrac{1}{4}\left(12x+20y\right)=\left(5y-3x\right)\left(5y+3x\right).4.\dfrac{1}{4}=25y^2-9x^2\)
\(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(x+\dfrac{3}{2}y\right)=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)=\dfrac{9}{4}y^2-x^2\)
\(\left(a+b+c\right)\left(a+b+c\right)=\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\left(x-y+z\right)\left(x+y-z\right)=x^2-\left(y-z\right)^2=x^2-y^2-z^2+2yz\)
\(\Leftrightarrow\left(6x-2\right)^2+\left(5x-2\right)^2-2\left(6x-2\right)\left(5x-2\right)=0\)
\(\Leftrightarrow\left[\left(6x-2\right)-\left(5x-2\right)\right]^2=0\)
\(\Leftrightarrow x^2=0\)
\(\Leftrightarrow x=0\)