K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2022

A = n2 + n + 2 

giả sử A chia hết cho 6  (phương pháp phản chứng , giả sử điều gì đó là đúng dẫn đến điều khác là đúng nhưng điều khác không bao giờ đúng dẫn đến điều giả sử là sai gọi là phản chứng )

     giả sử A ⋮ 6 ⇔ A ⋮ 3 ⇔ n2 + n + 2 ⋮ 3  ⇔ n2 + n : 3 dư 1 

nếu n ⋮ 3 ⇔ n2 + n  ⋮ 3 (vô lý)

nếu n chia 3 dư 1 ⇔ n2 : 3 dư 1 (một số chính phương chia 3 chỉ có thể dư 1 hoặc không dư )

⇔ n2 + n : 3 dư 2 (vô lý)

nếu n : 3 dư 2 ⇔ n2 : 3 dư 1 ( 1 số chính phương chia cho 3 chỉ có thể dư 1 hoặc không dư)

⇔ n2 + n ⋮ 3 (vô lý)

vậy n2 + n + 2 không chia hết cho 6 

                

2 tháng 12 2017

1) 

 n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2) 
số chia hết cho 6 là số chia hết cho 2 và 3 
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n 
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n 
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

2)

Bạn làm tương tự nha! 

2 tháng 12 2017

thank

11 tháng 7 2018

a, \(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)

Vậy ...

b, \(a^2b+b^2a=ab\left(a+b\right)\)

Nếu a chẵn, b lẻ thì \(ab\left(a+b\right)⋮2\)

Nếu a lẻ, b chẵn thì \(ab\left(a+b\right)⋮2\)

Nếu a,b cùng chẵn thì \(ab⋮2\Rightarrow ab\left(a+b\right)⋮2\)

Nếu a,b cùng lẻ thì \(a+b⋮2\Rightarrow ab\left(a+b\right)⋮2\)

c, \(51^n+47^{102}=\overline{...1}+47^{100}.47^2=\overline{...1}+\left(47^4\right)^{25}.47^2=\overline{...1}+\overline{...1}^{25}\cdot.\overline{...9}=\overline{...1}+\overline{...9}=\overline{...0}⋮10\)

6 tháng 4 2016

a, Ta có : 9 đồng dư với 1 (mod 4 ) => 9n đồng dư với 1 ( mod 4)

=> 9n+1 đồng dư với 2 (mod 4) ko chia hết cho 4 => 9n+1 ko chia hết cho 100 (vì 100 chia hết cho 4)

b, Gỉa sử n chia hết cho 3

=> n2+n+1 chia 3 dư 1.

Nếu n chia 3 dư 1

=> n2 đồng dư với 1 mod 3 => n2+n+1 chia hết cho 3

Nếu n chia 3 dư 2

=> n2 chia 3 dư 1 => n2+n+1 chia 3 dư 1.

Suy ra n chia 3 dư 1 để n2+n+1 chia hết cho 5

=> n2+n có tận cùng là 4 hoặc 9 mà hai số liên tiếp nhân nhau ko có tận cùng là 4 hoặc 9

=> n+ n+1 ko chia hết cho 15.

thấy sai thì góp ý nha

\(A=n^2+n+1=n\left(n+1\right)+1\)

Vì \(n\left(n+1\right)\)là tích hai số tự nhiên liên tiếp nên \(n\left(n+1\right)\)có các chữ số cuối là : 0;2;6

Do đó \(n\left(n+1\right)+1\)có các chữ số cuối là 1;3;7

Vì thế \(n\left(n+1\right)+1\)không chia hết cho 2;5 với mọi số n

Hay \(n^2+n+1\)không chia hết cho2;5 vs mọi số n

Vậy A không chia hết cho 2;5 với mọi số n 

3 tháng 1 2019

Ta có : n2+n+1                           (dấu . là dấu nhân)

        =n.n+n.1+1

        =n.(n+1)+1

Do n.(n+1) chia hết cho2

 Dựa vào một số chia hết cho 2 và 5 có tận cùng =0 (số chẵn )

=>n.(n+1)+1 ( số lẻ ) không chia hết cho 2 và 5 với mọi n thuộc N

11 tháng 8 2018

n2+n+1 = n(n+1) + 1

vì n(n+1) là tích của hai số tự nhiên liên tiếp nên n(n+1) + 1 là số lẻ 

n(n+1) + 1 ko chia hết cho 4 (ĐPCM)

vì tích hai số liên tiếp có tận cùng là 0;2;6

=> n(n+1) có tận cùng 1 trong số 0;2;6 => n(n+1) +1 có tận cùng 1 trong số 1;3;7 ko chia hết cho 5(đpcm)

31 tháng 12 2018

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4