\(^{3^2.10^3-\left[13^2-\left(5^2.4+2^2.15\right)\right].10^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(25.8^3-23.8^3=8^3\left(25-23\right)\)
\(=8^3.2\)
\(=2^9.2=2^{10}\)
b) \(5^4-2.5^3=5^3.5-2.5^3\)
\(=5^3\left(5-2\right)\)
\(=5^3.3=375\)
c)\(2.4^3-4^3.7-6.4^3=4^3\left(2-7-6\right)\)
\(=4^3.-11=-704\)
d)\(3^2.10^3-\left[13^2-\left(5^2.4+2^2.15\right)\right].10^3\)
\(=3^2.10^3-\left[13^2-2^2\left(5^2+15\right)\right].10^3\)
\(=3^2.10^3-\left[13^2-2^2.40\right].10^3\)
\(=10^3\left[3^2-9\right]\)
\(=0\)
Bài 1 :
a) \(25.8^3-23.8^3\)
\(=8^3.\left(25-23\right)\)
\(=512.2=1024\)
b) \(5^4-2.5^3\)
\(=5^3.5-2.5^3\)
\(=5^3\left(5-2\right)\)
\(=125.3\)
\(=375\)
c) \(2.4^3-4^3.7-6.4^3\)
\(=4^3.\left(2-7-6\right)\)
\(=64.\left(-11\right)=-704\)
d) \(3^2.10^3-\left[13^2-\left(5^2.4+2^2.15\right)\right]\)
\(=9.1000-\left[169-\left(25.4+4.15\right)\right]\)
\(=9000-\left[169-4\left(25+15\right)\right]\)
\(=9000-\left[169-4.40\right]\)
\(=9000-\left[169-160\right]\)
\(=9000-9=8991\)
o0o Ma Kết _ Capricorn o0o trời ơi là trời, thể nào mk thấy nó là lạ!
\(3^2.10^3-\left[13^2\left(5^2.4+2^2.15\right)\right].10^3\)
\(=9.1000-\left[169\left(25.4+4.15\right)\right].1000\)
\(=9000-\left\{169.\left[4\left(25+15\right)\right]\right\}.1000\)
\(=9000-\left\{169.\left[4.40\right]\right\}.1000\)
\(=9000-\left\{169.160\right\}.1000\)
Tự tính tiếp nhé!!
a,
\(\dfrac{4^2\cdot4^3}{2^{10}}=\dfrac{4^5}{2^{10}}=\dfrac{\left(2^2\right)^5}{2^{10}}=\dfrac{2^{10}}{2^{10}}=1\)
b,
\(\dfrac{\left(0,6\right)^5}{\left(0,2\right)^6}=\dfrac{\left(0,2\cdot3\right)^5}{\left(0,2\right)^5\cdot0,2}=\dfrac{\left(0,2\right)^5\cdot3^5}{\left(0,2\right)^5\cdot0,2}=\dfrac{243}{0,2}=\dfrac{243}{\dfrac{1}{5}}=243\cdot5=1215\)
c,
\(\dfrac{2^7\cdot9^3}{6^5\cdot8^2}=\dfrac{2^7\cdot\left(3^2\right)^3}{\left(2\cdot3\right)^5\cdot\left(2^3\right)^2}=\dfrac{2^6\cdot2\cdot3^6}{2^5\cdot3^5\cdot2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
d,
\(\dfrac{6^3+3\cdot6^2+3^3}{-13}=\dfrac{\left(2\cdot3\right)^3+3\cdot\left(2\cdot3\right)^2+3^3}{-13}=\dfrac{2^3\cdot3^3+3\cdot2^2\cdot3^2+3^3}{-13}=\dfrac{2^3\cdot3^3+2^2\cdot3^3+3^3}{-13}\dfrac{3^3\left(2^3+2^2+1\right)}{-13}=\dfrac{3^3\cdot13}{-13}=-3^3=-27\)
a.
\(-2^3+2^2+\left(-1\right)^{2013}=-8+4-1=-5\)
b.
\(\left(3^3\right)^2-\left[\left(-2\right)^3\right]^2-\left(-5\right)^2=27^2-\left(-8\right)^2-25=729-64-25=640\)
c.
\(2^3+3\times\left(-\frac{1}{2016}\right)^0-\left(\frac{1}{2}\right)^2\times4-\left[\left(-2\right)^2\div\frac{1}{2}\right]=8+3\times0-\frac{1}{4}\times4-\left(4\times2\right)=8+3-1-8=2\)
\(8,1-\left(x-6\right)=4\left(2-2x\right)\)
\(\Leftrightarrow1-x+6=8-8x\)
\(\Leftrightarrow-x+8x=8-1-6\)
\(\Leftrightarrow7x=1\)
\(\Leftrightarrow x=\dfrac{1}{7}\)
\(9,\left(3x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)
\(10,\left(x+3\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)
`8)1-(x-5)=4(2-2x)`
`<=>1-x+5=8-6x`
`<=>5x=2<=>x=2/5`
`9)(3x-2)(x+5)=0`
`<=>[(x=2/3),(x=-5):}`
`10)(x+3)(x^2+2)=0`
Mà `x^2+2 > 0 AA x`
`=>x+3=0`
`<=>x=-3`
`11)(5x-1)(x^2-9)=0`
`<=>(5x-1)(x-3)(x+3)=0`
`<=>[(x=1/5),(x=3),(x=-3):}`
`12)x(x-3)+3(x-3)=0`
`<=>(x-3)(x+3)=0`
`<=>[(x=3),(x=-3):}`
`13)x(x-5)-4x+20=0`
`<=>x(x-5)-4(x-5)=0`
`<=>(x-5)(x-4)=0`
`<=>[(x=5),(x=4):}`
`14)x^2+4x-5=0`
`<=>x^2+5x-x-5=0`
`<=>(x+5)(x-1)=0`
`<=>[(x=-5),(x=1):}`
a)
\(\begin{array}{l}\left( {9x - {2^3}} \right):5 = 2\\9x - {2^3} = 2.5\\9x - 8 = 10\\9x = 18\\x = 2\end{array}\)
Vậy \(x = 2\)
b)
\(\begin{array}{l}\left[ {{3^4} - \left( {{8^2} + 14} \right):13} \right]x = {5^3} + {10^2}\\\left[ {81 - \left( {64 + 14} \right):13} \right]x = 125 + 100\\\left[ {81 - 78:13} \right]x = 125 + 100\\\left[ {81 - 6} \right]x = 225\\75x = 225\\x = 3\end{array}\)
Vậy \(x = 3\)