K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ABCD là hình chữ nhật

=>\(AC^2=AD^2+DC^2\)

=>\(AC=\sqrt{8^2+15^2}=17\left(cm\right)\)

b: ΔDAC vuông tại D có DM là đường cao

nên DM^2=MA*MC; DM*AC=DA*DC
=>DM*17=8*15

=>DM=120/17(cm)

c: Xét ΔMAN vuông tại M và ΔMIC vuông tại M có

góc MAN=góc MIC

Do đó: ΔMAN đồng dạng với ΔMIC

=>MA/MI=MN/MC

=>MA*MC=MI*MN=MD^2

25 tháng 8 2023

Cái quan trọng là câu d ý bạn mấy câu đó mình làm được hết r

Xét ΔABC vuông cân tại A có AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(MB=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên AM=MB

Xét ΔABC vuông cân tại A có AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)

nên AM là đường cao, đường phân giác ứng với cạnh BC(Định lí tam giác cân)

⇒AM⊥BC

Ta có: \(\widehat{EMA}+\widehat{AMD}=\widehat{EMD}\)(tia MA nằm giữa hai tia ME,MD)

hay \(\widehat{EMA}+\widehat{AMD}=90^0\)(1)

Ta có: \(\widehat{AMD}+\widehat{BMD}=\widehat{AMB}\)(tia MD nằm giữa hai tia MA,MB)

hay \(\widehat{AMD}+\widehat{BMD}=90^0\)(2)

Từ (1) và (2) suy ra \(\widehat{EMA}=\widehat{DMB}\)

Ta có: AM là tia phân giác của \(\widehat{BAC}\)(cmt)

nên \(\widehat{MAC}=\dfrac{\widehat{BAC}}{2}=\dfrac{90^0}{2}=45^0\)

hay \(\widehat{EAM}=45^0\)

mà \(\widehat{B}=45^0\)(Số đo của một góc ở đáy trong ΔABC vuông cân tại A)

nên \(\widehat{EAM}=\widehat{B}\)

Xét ΔEAM và ΔDBM có 

\(\widehat{EMA}=\widehat{DMB}\)(cmt)

AM=MB(cmt)

\(\widehat{EAM}=\widehat{B}\)(cmt)

Do đó: ΔEAM=ΔDBM(g-c-g)

⇒ME=MD(hai cạnh tương ứng)(đpcm)

Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

=>ADME là hình chữ nhật

=>AM cắt DE tại trung điểm của mỗi đường

mà O là trung điểm của DE

nên O là trung điểm của AM

=>A,O,M thẳng hàng

1 tháng 9 2023

Mình cảm ơn bạn ạ

3 tháng 1 2018

mình cũng đag gặp khó khăn câu 4