Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
+,Có CK vuông góc AB
BD vuông góc AB
=> CK // BD
=> CE //BD (*)
+,Có BH vuông góc AC
CD vuông góc AC
=> BH // CD
=> BE //CD (**)
Từ (*) (**) => BDCE là hình bình hành
b.
Có BDCE là hình bình hành (cmt)
=> đ/chéo BC giao đ/chéo DE tại trung điểm mỗi đường
mà M là trung điểm BC
=> M là trung điểm DE
c, Để DE đi qua A thì cần điều kiện tam giác ABC cân tại D.
a: Xét tứ giác BHCD có
BH//CD
CH//BD
Do đó:BHCD là hình bình hành
b: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
hay H,M,D thẳng hàng
a: Xét tứ giác BDCE có
BD//CE
BE//CD
Do đó: BDCE là hình bình hành
b: Ta có: BDCE là hình bình hành
nên BC cắt DE tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của DE
d: Xét tứ giác ABDC có
\(\widehat{ABD}+\widehat{ACD}=180^0\)
Do đó: ABDC là tứ giác nội tiếp
Suy ra: \(\widehat{A}+\widehat{D}=180^0\)
a: Xét tứ giác BDCE có
BE//CD
CE//BD
Do đó: BDCE là hình bình hành
b: Ta có: BDCE là hình bình hành
nên Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của ED
Cho tam giác ABC. Các đường cao BH và CK cắt nhau tại E. Qua B kẻ Bx vuông góc với AB. Qua C kẻ Cy vuông góc với AC. Hai đường thẳng Bx và Cy cắt nhau tại D. Chứng minh tứ giác BDCE là hình bình hành - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục