1. Chứng minh rằng, các tổng sau không phảo la số chính phương:
a)A=2+22+23+...+22015
b)B=3+32+33+...+32016
c)C=53+54+55+...+52016
2. Một số chính phương có chữ số hàng đơn vị là 6. Chứng minh rằng, chữ số hàng chục là số lẻ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta biết một số chính phương có chữ số hàng đơn vị là 6 thì chữ số hàng chục của nó là số lẻ. Vì vậy chữ số hàng chục của 5 số chính phương đã cho là 1,3,5,7,9 khi đó tổng của chúng bằng 1 + 3 + 5 + 7 + 9 = 25 = 52 là số chính phương
Nếu một số chính phương M = a2 có chữ số hàng đơn vị là 6 thì chữ số tận cùng của a là 4 hoặc 6 a2 a 2 4 Theo dấu hiệu chia hết cho 4 thì hai chữ số tận cùng của M chỉ có thể là 16, 36, 56, 76, 96 Ta có: 1 + 3 + 5 + 7 + 9 = 25 = 52 là số chính phương
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Lời giải:
Gọi phần tận cùng của scp là $\overline{bc}$ với $b,c$ là số tự nhiên có 1 chữ số. $b$ lẻ nên $b=2k+1$ với $k$ tự nhiên.
Vì scp chia $4$ có dư $0$ hoặc $1$ nên $\overline{bc}$ chia $4$ dư $0$ hoặc $1$
$\Rightarrow 10b+c\equiv 0,1\pmod 4$
$\Rightarrow 10(2k+1)+c\equiv 0,1\pmod 4$
$\Rightarrow c+10\equiv 0,1\pmod 4$
$\Rightarrow c\equiv 2,3\pmod 4(1)$
Mà $c$ có 1 chữ số nên $c=2,3,6,7$ (1)
Lại có:
SCP chia 5 dư $0,1,4$
$\Rightarrow \overline{bc}\equiv 0,1,4\pmod 5$
$\Rightarrow 10b+c=10(2k+1)+c=c+10\equiv 0,1,4\pmod 5$
$\Rightarrow c\equiv 0,1,4\pmod 5$
$\Rightarrow c=0,1,4,6$ (2)
Từ $(1); (2)\Rightarrow c=6$