K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2015

Gọi 3 phần đó là x,y,z 

Vì x,y,z tỉ lệ thuận với \(\frac{1}{2};\frac{2}{3};\frac{3}{4}\)nên

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{2}{3}}=\frac{z}{\frac{3}{4}}\)

và \(x+y+z=552\)

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{2}{3}}=\frac{z}{\frac{3}{4}}=\frac{x+y+z}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}}=\frac{552}{\frac{23}{12}}=288\)

Do đó \(x=288.\frac{1}{2}\Rightarrow x=144\)

         \(y=288.\frac{2}{3}\Rightarrow y=192\)

        \(z=288.\frac{3}{4}\Rightarrow z=216\)

vậy \(x=144;y=192;z=216\)

22 tháng 5 2019

#)Trả lời :

Câu 1 :

a) Gọi ba phần đó là a, b, c

    Theo đầu bài, ta có : a, b, c tỉ lệ thuận với 3; 4; 5 => \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a + b + c = 552

    Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây bn tự lm típ hen )

b) Gọi ba phần đó là a, b, c

    Theo đầu bài, ta có : a, b, c tỉ lệ nghịch với 3, 4, 6 => a, b, c tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{4};\frac{1}{6}\)

    => \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)và a + b + c = 315 

   Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây tự lm típ hen :D )

Câu 2 :

   \(\frac{x}{11}=\frac{y}{12}\Rightarrow\frac{2x}{22}=\frac{y}{12}\left(1\right)\)

   \(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\left(2\right)\)

   Từ (1) và (2) suy ra \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)

   Áp dụng tính chất dãy tỉ số bằng nhau :

   \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}\)

\(\Rightarrow x=44;y=48;z=112\)

    #~Will~be~Pens~#

25 tháng 5 2019

1a) Gọi ba phần đó là x, y, z.

Vì x, y, z tỉ lệ với 3, 4, 5 nên \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{552}{12}=46\)

\(\Rightarrow\hept{\begin{cases}x=46.3=138\\y=46.4=184\\z=46.5=230\end{cases}}\)

Vậy 3 phần đó là 138, 184, 230

26 tháng 2 2020

a) Gọi ba phần cần chia của số 185 là a,b,c

ta có a+b+c= 185

Vì a,b,c tỉ lệ thuận với 3/5; 7/4 và 7/10

suy ra \(\frac{a}{\frac{3}{5}}=\frac{b}{\frac{7}{4}}=\frac{c}{\frac{7}{10}}=\frac{a+b+c}{\frac{3}{5}+\frac{7}{4}+\frac{7}{10}}=\frac{185}{\frac{61}{20}}=\frac{3700}{61}\)

suy ra a=2220/61; b=5475/61; c=2590/61

b) Gọi ba phần cần chia của số 480 là a,b,c

ta có a+b+c= 480

Vì a,b,c tỉ lệ nghịch với 5;4 và 10/3

nên 5a=4b=10/3c

hay \(\frac{a}{\frac{1}{5}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{3}{10}}=\frac{a+b+c}{\frac{1}{5}+\frac{1}{4}+\frac{3}{10}}=\frac{480}{\frac{3}{4}}=640\)

a=640:5=128

b= 640:4=160

c= 640.3/10=192

10 tháng 6 2015

a)  gọi 3 phần đó là x, y, z

ta có:

x/3 = y/4 = z/5  và x + y + z = 552

áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/3 = y/4 = z/5 = (x + y + z) / (3 + 4 + 5) = 552 / 12 = 46

x/3 = 46          => x = 46 x 3 = 138

y/4 = 46         => y = 46 x 4 = 184

z/5 = 46          => z = 46 x 5  = 230

vậy 3 phần đó là:  138; 184; 230

b) gọi 2 phần đó là a, b, c

ta có:

\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)  và a + b + c = 315

áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{315}{\frac{3}{4}}=420\)

\(\frac{a}{\frac{1}{3}}=420\Rightarrow a=420\cdot\frac{1}{3}=140\)

\(\frac{b}{\frac{1}{4}}=420\Rightarrow b=420\cdot\frac{1}{4}=105\)

\(\frac{c}{\frac{1}{6}}=420\Rightarrow c=420\cdot\frac{1}{6}=70\)

vậy 3 phần đó là:140, 105, 70

21 tháng 12 2016

mình không biết

28 tháng 7 2023

a) Tỉ lệ thuận

Phần 1: 248

Phần 2 : \(\dfrac{1240}{3}\)

Phần 3: 620

b) tỉ lệ nghịch thì ngược lại...

14 tháng 8 2015

Gọi 3 phần đó lần lượt là a, b, c

Có:  a/2 = b/3; b/5 = c/7

=> a/10 = b/15 = c/21   và  a + b + c = 92

áp dụng tính chất dãy tỉ số bằng nhau, có:

\(\frac{a}{10}=\frac{b}{15}=\frac{c}{21}=\frac{a+b+c}{10+15+21}=\frac{92}{46}=2\)

suy ra: a/10 = 2    => a = 20

           b/15 = 2       => b = 30

         c/21 = 2        =>  c = 42