K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2019

#)Trả lời :

Câu 1 :

a) Gọi ba phần đó là a, b, c

    Theo đầu bài, ta có : a, b, c tỉ lệ thuận với 3; 4; 5 => \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a + b + c = 552

    Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây bn tự lm típ hen )

b) Gọi ba phần đó là a, b, c

    Theo đầu bài, ta có : a, b, c tỉ lệ nghịch với 3, 4, 6 => a, b, c tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{4};\frac{1}{6}\)

    => \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)và a + b + c = 315 

   Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây tự lm típ hen :D )

Câu 2 :

   \(\frac{x}{11}=\frac{y}{12}\Rightarrow\frac{2x}{22}=\frac{y}{12}\left(1\right)\)

   \(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\left(2\right)\)

   Từ (1) và (2) suy ra \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)

   Áp dụng tính chất dãy tỉ số bằng nhau :

   \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}\)

\(\Rightarrow x=44;y=48;z=112\)

    #~Will~be~Pens~#

25 tháng 5 2019

1a) Gọi ba phần đó là x, y, z.

Vì x, y, z tỉ lệ với 3, 4, 5 nên \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{552}{12}=46\)

\(\Rightarrow\hept{\begin{cases}x=46.3=138\\y=46.4=184\\z=46.5=230\end{cases}}\)

Vậy 3 phần đó là 138, 184, 230

Bài 1: 

Ta có: \(3x=2y\)

nên \(\dfrac{x}{2}=\dfrac{y}{3}\)

mà x+y=-15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)

Vậy: (x,y)=(-6;-9)

Bài 2: 

a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y-z=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)

Vậy: (x,y,z)=(40;30;50)

3 tháng 7 2017

1) Gọi 3 phần đó là a,b,c

Theo đề bài ta có: a,b,c tỉ lệ nghịch với 3,4,5 => a,b,c tỉ lệ thuận với \(\frac{1}{3},\frac{1}{4},\frac{1}{5}\) tức là

\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{5}}\) và a + b + c = 315

Áp dụng tính chất của dãy tỉ số bằng nhau:

Đến đây tự lm típ

2) \(\frac{x}{11}=\frac{y}{12}\Rightarrow\frac{2x}{22}=\frac{y}{12}\left(1\right)\)

\(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}=4\)

=> x = 44 ; y = 48 ; z = 112

7 tháng 7 2017

mk k hỉu câu 2 cho lắm

31 tháng 12 2015

khó vậy đọc đã chóng mặt

31 tháng 12 2015

y và z tỉ lệ nghịch với 2012 và 52 là sao ?

10 tháng 12 2018

Vì y tỉ lệ ngịch với x theo hệ số tỉ lệ là \(\frac{1}{2}\)\(\Rightarrow xy=\frac{1}{2}\)(1)

Vì x tỉ lệ thuận với z theo hệ số tỉ lệ là \(\frac{2}{3}\)\(\Rightarrow x=\frac{2}{3}z\)(2)

They (2) vào (1) ta được \(\frac{2}{3}.z.y=\frac{1}{2}\)\(\Rightarrow yz=\frac{1}{2}:\frac{2}{3}=\frac{3}{4}\)

Vậy y tỉ lệ nghịch với z theo hệ số tỉ lệ là \(\frac{3}{4}\)

5 tháng 12 2020

\(\frac{x}{y}=\frac{1}{3};\frac{x}{z}=3\)

\(\frac{x}{y}:\frac{x}{z}=\frac{1}{9}\)

\(\frac{z}{y}=\frac{1}{9}\)

Vậy z tỉ lệ nghịch với y và hệ số tỉ lệ bằng \(\frac{1}{9}\)