Cho p,p+2 là số nguyên tố(p>3)
CMR: p+p+2 chia hết cho 12.
*Giúp mình nha, cần gấp luôn đó^_^*
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải bằng phương pháp đánh giá em nhé.
+ Nếu p = 2 ta có:
2 + 8 = 10 (loại)
+ Nếu p = 3 ta có:
3 + 8 = 11 (nhận)
4.3 + 1 = 13 (nhận)
+ Nếu p = 3\(k\) + 1 ta có:
p + 8 = 3\(k\) + 1 + 8 = 3\(k\) + 9 = 3(\(k+3\)) là hợp số (loại)
+ nếu p = 3\(k\) + 2 ta có:
4p + 1 = 4(3\(k\) + 2) + 1 = 12\(k\) + 9 = 3\(\left(4k+3\right)\) là hợp số loại
Vậy p = 3 là giá trị thỏa mãn đề bài
Kết luận: số nguyên tố p sao cho p + 8 và 4p + 1 đều là các số nguyên tố đó là 3
1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)
Mà b+a>b-a ; p là số nguyên tố
=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)
=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)
Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4
Mà p là số nguyên tố
=> \(p^2\)chia 8 dư 1
=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)
+Số chính phương chia 3 luôn dư 0 hoặc 1
Mà p là số nguyên tố lớn hơn 3
=> \(p^2\)chia 3 dư 1
=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)
Từ (1);(2)=> \(a⋮12\)
Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)
gọi 2 số liên tiếp đó là : a và a + 1
có :
a + a + 1 = 316
=> 2a + 1 = 316
=> 2a = 315
=> a = 157,5
=> a + 1 = 157,5 + 1 = 158,5
Bạn ơi! 2 số liên tiếp luôn có tổng là số lẻ. Mà bạn nói tổng là 316(số chẵn) -> đề sai