K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

Đặt \(t=\sqrt{x-2008},t\ge0\) \(\Rightarrow x=t^2+2008\) thay vào BT : 

\(t^2+2008-t+\frac{1}{4}=\left(t-\frac{1}{2}\right)^2+2008\ge2008\)

Đẳng thức xảy ra khi t = 1/2 <=> x = 1/4

Vậy BT đạt giá trị nhỏ nhất bằng 2008 khi x = 1/4

11 tháng 11 2016

đẳng thức xảy ra khi t = 1/2 <=> x = 8033/4

cái này mới đúng nhé!

10 tháng 11 2016

Đặt \(t=\sqrt{x-2008},t\ge0\) . Vậy thì \(x=t^2+2008\) 

Từ đó ta đưa bài toán về tìm giá trị nhỏ nhất của \(t^2+t+2008+\frac{1}{4}\)

Tới đây bạn có thể tự làm được :)

11 tháng 11 2016

nhập GTNN=2008 nó cho sai bạn ơi

21 tháng 11 2017

Bạn ơi bài này có cho thêm đk x > 0 ko ?

21 tháng 11 2017

có pn nha

25 tháng 3 2020

Min=5

30 tháng 5 2020

Ta có: \(3\sqrt{x+2y-1}=\sqrt{9\left(x+2y-1\right)}\le\frac{9+x+2y-1}{2}\)

\(=\frac{x+2y}{2}+4\Leftrightarrow3\sqrt{x+2y-1}-4\le\frac{x+2y}{2}\)(1)

Tương tự ta có: \(3\sqrt{y+2z-1}\le\frac{y+2z}{2}\left(2\right);3\sqrt{z+2x-1}\le\frac{z+2x}{2}\left(3\right)\)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được:

\(T=\frac{x}{3\sqrt{x+2y-1}-4}+\frac{y}{3\sqrt{y+2z-1}-4}+\frac{z}{3\sqrt{z+2x-1}-4}\)

\(\ge\frac{2x}{x+2y}+\frac{2y}{y+2z}+\frac{2z}{z+2x}\)\(=2\left(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2zx}\right)\)

\(\ge2.\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=2.\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=2\)(Theo BĐT Bunhiacopxki dạng phân thức)

Đẳng thức xảy ra khi \(x=y=z=\frac{10}{3}\)

27 tháng 2 2020

ai đó trả lời câu hỏi này đi