Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3\sqrt{x+2y-1}=\sqrt{9\left(x+2y-1\right)}\le\frac{9+x+2y-1}{2}\)
\(=\frac{x+2y}{2}+4\Leftrightarrow3\sqrt{x+2y-1}-4\le\frac{x+2y}{2}\)(1)
Tương tự ta có: \(3\sqrt{y+2z-1}\le\frac{y+2z}{2}\left(2\right);3\sqrt{z+2x-1}\le\frac{z+2x}{2}\left(3\right)\)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được:
\(T=\frac{x}{3\sqrt{x+2y-1}-4}+\frac{y}{3\sqrt{y+2z-1}-4}+\frac{z}{3\sqrt{z+2x-1}-4}\)
\(\ge\frac{2x}{x+2y}+\frac{2y}{y+2z}+\frac{2z}{z+2x}\)\(=2\left(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2zx}\right)\)
\(\ge2.\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=2.\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=2\)(Theo BĐT Bunhiacopxki dạng phân thức)
Đẳng thức xảy ra khi \(x=y=z=\frac{10}{3}\)
a/ ĐKXĐ: \(\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\)
\(A=\left[\frac{1}{\sqrt{x}-1}+\frac{1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]:\left[\frac{2\left(\sqrt{x}-1\right)-\sqrt{x}+4}{\sqrt{x}-1}\right]\)
\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}+2}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{1}{\sqrt{x}+1}\)
b/
Ta có: \(A=\frac{1}{\sqrt{x}+1}\ge1\)
Vậy Min A = 1 .Dấu "=" xảy ra khi x = 0
a , rút gọn : A= \(\left(\frac{1}{\sqrt{x}+1}+\frac{1}{x-1}\right):\left(2-\frac{\sqrt{x}-4}{\sqrt{x}-1}\right)\)
A= \(\left(\frac{1\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\frac{\sqrt{x}-4}{\sqrt{x}-1}\right)\)
A= \(\left(\frac{\sqrt{x}+1+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{2\sqrt{x}-2-\sqrt{x}+4}{\sqrt{x}-1}\right)\)
A= \(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}+2}{\sqrt{x}-1}\)
A=\(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
A = \(\frac{1}{\sqrt{x}+1}\)
Min=5