K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

vi n+3 la boi cua n+1thi

n=1

20 tháng 1 2016

=>(n+1)+2 chia hết cho n+1

Mà n+1 chia hết cho n+1

=>2 chia hết cho n+1

=> n+1 thuộc Ư(2)={1;2;-1;-2}

=> n thuộc {0;1;-2;-3}
Vậy n thuộc {0;1;-2;-3}

20 tháng 1 2016

ta có : n+3 chia hết cho n+1

ta có   n+1 chia hết cho n+1

=>(n+3) - (n+1) chia hết cho n+1

=> 2 chia hết n+1

=> n+1 thuộc Ư(2) 1;2

ta xét 2 trường hợp sau

TH1: n+1=1 => n=0 ( thỏa mãn)

TH2 : n+1=2 => n=1 ( thỏa mãn)

( tick cho mình nha)

 

22 tháng 7 2015

-11 là bội của n-1

=> -11 chia hết cho n-1

=> n-1 thuộc Ư(-11)

n-1n
12
-10
1112
-11-10

KL: n thuộc......................

22 tháng 7 2015

nhìu qá bn ơi (kq thui đc k)

24 tháng 2 2020

Mik ko hiểu là đề bài yêu cầu làm j :>???

24 tháng 2 2020

Đề bài là tìm tập hợp các số nguyên n

14 tháng 1 2016

1 số nguyên tố

2 n = 1 ; n = 2

 

14 tháng 1 2016

Giải thích ra giùm mình với!

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

Đặt $n+1=a^2$ và $2n+1=b^2$ với $a,b$ là số tự nhiên.

Vì $2n+1$ lẻ nên $b^2$ lẻ. SCP lẻ chia $4$ dư $1$ nên $2n+1$ chia $4$ dư $1$

$\Rightarrow 2n\vdots 4$

$\Rightarrow n\vdots 2$

$\Rightarrow n+1=a^2$ lẻ. Ta biết SCP lẻ chia $8$ dư $1$ nên $n+1=a^2$ chia $8$ dư $1$

$\Rightarrow n\vdots 8(1)$

Mặt khác:

Nếu $n$ chia 3 dư $1$ thì $n+1$ chia $3$ dư $2$ (vô lý vì 1 SCP chia 3 dư 0 hoặc 1)

Nếu $n$ chia $3$ dư $2$ thì $2n+1$ chia $3$ dư $2$ (cũng vô lý)

Do đó $n$ chia hết cho $3(2)$ 

Từ $(1);(2)$ mà $(3,8)=1$ nên $n\vdots 24$ (đpcm)

5 tháng 1 2021

là gì vậy

 

15 tháng 12 2021

Đk: n∈Zn∈Z
a)a) Để 1919 là bội của n−3n-3 thì:

19⋮n−319⋮n-3

⇒n−3∈Ư(19)={±1;±19}⇒n-3∈Ư(19)={±1;±19}

⇒n∈{2;4;−16;22}⇒n∈{2;4;-16;22}
b)b) Để 2n+72n+7 là bội của n−3n-3 thì:

2n+7⋮n−32n+7⋮n-3

⇒2n−6+13⋮n−3⇒2n-6+13⋮n-3

Vì 2n−6⋮n−32n-6⋮n-3

⇒13⋮n−3⇒13⋮n-3

⇒n−3∈Ư(13)={±1;±13}⇒n-3∈Ư(13)={±1;±13}

⇒n∈{2;4;−10;16}⇒n∈{2;4;-10;16}

c)c) Để n+2n+2 là ước của 5n−15n-1 thì:

5n−1⋮n+25n-1⋮n+2

⇒5n+10−11⋮n+2⇒5n+10-11⋮n+2

Vì 5n+10⋮n+25n+10⋮n+2

⇒−11⋮n+2⇒-11⋮n+2

⇒n+2∈Ư(−11)={±1;±11}⇒n+2∈Ư(-11)={±1;±11}

⇒n∈{−3;−1;−13;9}⇒n∈{-3;-1;-13;9}

d)d) Để n−3n-3 là bội của n2+4n2+4 thì:

n−3⋮n2+4n-3⋮n2+4

⇒(n−3)2⋮n2+4⇒(n-3)2⋮n2+4

⇒(n+3)(n−3)⋮n2+4⇒(n+3)(n-3)⋮n2+4

⇒n(n−3)+3(n−3)⋮n2+4⇒n(n-3)+3(n-3)⋮n2+4

⇒n2−3n+3n−9⋮n2+4⇒n2-3n+3n-9⋮n2+4

⇒n2−9⋮n2+4⇒n2-9⋮n2+4

⇒n2+4−13⋮n2+4⇒n2+4-13⋮n2+4

Vì n2+4⋮n2+4n2+4⋮n2+4

⇒−13⋮n2+4⇒-13⋮n2+4

⇒n2+4∈Ư(−13)={±1;±13}⇒n2+4∈Ư(-13)={±1;±13}

⇒n2∈{−5;−3;−17;9}⇒n2∈{-5;-3;-17;9}

⇒n2∈{9}⇒n2∈{9}

⇒n∈{±3}⇒n∈{±3} 

Bài 3:

ƯC(−15;20)={±1;±5}