Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2−7⋮n+3n2−7⋮n+3
⇒n2+3n−3n−7⋮n+3⇒n2+3n−3n−7⋮n+3
⇒n2+3n−3n−9+16⋮n+3⇒n2+3n−3n−9+16⋮n+3
⇒n(n+3)−3(n+3)+16⋮n+3⇒n(n+3)−3(n+3)+16⋮n+3
⇒(n−3)(n+3)+16⋮n+3⇒(n−3)(n+3)+16⋮n+3
⇒n+3∈Ư(16)⇒n+3∈Ư(16)
Ư(16)={±1;±2;±4;±8;±16}Ư(16)={±1;±2;±4;±8;±16}
Xét ước
Bài 1 ( x - 7 ) ( x + 3 ) < 0
\(\Rightarrow\hept{\begin{cases}x-7< 0\\x+3>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-7>0\\x+3< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 7\\x>-3\end{cases}}\) hoăc \(\hept{\begin{cases}x>7\\x< -3\end{cases}}\) ( vô lí )
\(\Rightarrow\) - 3 < x < 7
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Vậy \(x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Bài 2 n - 1 là bội của n + 5 và n + 5 là bội của n - 1
Là 2 bài riêng biệt ak ????
Bài 3 : Tìm a,b. thuộc Z biết ab = 24 ; a + b = -10 ~~~~~ Lát nghĩ
Bài 4 : Tìm các cặp số nguyên có tổng bằng tích ~~~~~ tối lm
Đề bài có phải như thế này không:
Cho phân số \(A=\frac{n+1}{n-3}\)( với n thuộc Z và n khác 3 ). Tìm n để A là phân số tối giản.
Bài làm
\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
A là phân số tối giản \(\Leftrightarrow\frac{4}{n-3}\)là phân số tối giản
\(\Leftrightarrow n-3\)là số lẻ
\(\Leftrightarrow n\)là số chẵn
\(\Rightarrow n=2k\left(k\in Z\right)\)
Mình làm theo đề bạn trên nhé !
\(A=\frac{n+1}{n-3}\)
Gọi d là (n+1;n-3)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\n-3⋮d\end{cases}}\)
\(\Rightarrow n+1-\left(n-3\right)⋮d\)
\(\Rightarrow4⋮d\)
\(\Rightarrow d=1;d=2;d=4\)
( vì 4 chia hết cho 2 nên ta chỉ làm 1 trường hợp ) TH1 :Nếu d=2
\(\Rightarrow n+1⋮2\)
\(\Rightarrow n+1=2k\)
\(\Rightarrow\) n= 2k-1
khi đó :
n-3 = 2k-1-3=2k-4 \(⋮\) 2
=> phân số đó rút gọn được cho 2
Vậy để phân số trên tối giản thì \(n\ne2k-1\)
Có \(A=\frac{n+1}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)
Để A là phân số tối giản thì UCLN (4,n-3) = 1
=> n -3 là số lẻ
=> n lẻ
=> n có dạng 2k+1 (k thuôc Z) và k khác 1 (để n khác 3)
Vậy...
Đặt \(A=\frac{n+3}{n-2}\left(ĐKXĐ:x\ne2\right)\)
Ta có:\(A=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)
Để A nguyên thì 5 chia hết cho n-2. Hay \(\left(n-2\right)\inƯ\left(5\right)\)
Ư (5) là:[1,-1,5,-5]
Do đó ta có bảng sau:
n-2 | -5 | -1 | 1 | 5 |
n | -3 | 1 | 3 | 7 |
Vậy để A nguyên thì n=-3;1;3;7
Vì n thuộc Z nên n+3 và n-2 cũng thuộc Z
Mà n+3/n-2 thuộc Z nên n+3 chia hết cho n-2
=>(n-2)+5chia hết cho n-2
=>5 chia hết cho n-2
=>n-2 thuộc ƯC (5)={5;-5;1;-1}
=>n thuộc {7;-3;3;1)
Vậy n thuộc..........