K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2022

A B C D E F K

Gọi K là giao của AE và DF

Xét tg vuông BDF và tg vuông BKF có

\(\widehat{EBF}=\widehat{EKF}\) (cùng phụ với \(\widehat{BDK}\) ) (1)

=> B và K cùng nhìn EF dưới hai góc bằng nhau

=> BEFK là tứ giác nội tiếp \(\Rightarrow\widehat{EFB}=\widehat{EKB}\) (góc nt cùng chắn cung EB) (2)

Ta có \(\widehat{EBF}=\widehat{ABD}\) (gt) (3)

Từ (1) và (3) \(\Rightarrow\widehat{ABD}=\widehat{EKF}\) => B và K cùng nhìn AD dưới 2 góc bằng nhau) => ABKD là tứ giác nội tiếp

\(\Rightarrow\widehat{ADB}=\widehat{EKB}\) (góc nội tiếp cùng chắn cung AB) (4)

Xét tg ABD và tg EBF có

\(\widehat{ABD}=\widehat{EBF}\) (gt)

Từ (2) và (4) \(\Rightarrow\widehat{ADB}=\widehat{EFB}\)

\(\Rightarrow\widehat{BAC}=\widehat{BEF}\)

 

30 tháng 3 2020

a ) Xét 2 tam giác vuông \(\Delta BEF\) và \(\Delta BAC\) có : 

\(BF=BC\) ( do \(\Delta BFC\) cân đỉnh B ) 

\(\widehat{B}\) : chung 

\(\Rightarrow\Delta BEF=\Delta BAC\)  (cạnh huyền-góc nhọn).

b ) Theo câu a ) ta có : \(\Delta BEF=\Delta BAC\) \(\Rightarrow\widehat{BFE}=\widehat{BCA}\) (hai góc tương ứng)

Mà \(\Delta BFC\) cân đỉnh B nên : \(\widehat{BFC}=\widehat{BCF}\)

\(\widehat{BFC}-\widehat{BFE}=\widehat{BCF}-\widehat{BCA}\)

\(\Rightarrow\widehat{EFC\:}=\widehat{ACF}\)

Hay \(\widehat{DFC}=\widehat{DCF}\) \(\Rightarrow\Delta DFC\) cân đỉnh D \(\Rightarrow DF=DC\)

Xét \(\Delta BFD\) và \(\Delta BCD\) có : 

\(BF=BC\left(gt\right)\)

\(BD\) : chung 

\(DF=DC\left(cmt\right)\)

\(\Rightarrow\Delta BFD=\Delta BCD\left(c.c.c\right)\)

\(\Rightarrow\widehat{FBD}=\widehat{CBD}\) (hai góc tương ứng)

\(\Rightarrow BD\) là phân giác của \(\widehat{FBC}\)

c ) Ta có \(\Delta BEF=\Delta BAC\)( câu a ) 

\(\Rightarrow BE=BA\) ( 2 cạnh tương ứng )

\(\Rightarrow BF-BA=BC-BE\) hay AF = EC 

Xét \(\Delta AFM\)và \(\Delta ECM\) có : 

\(FM=CM\) ( vì M là trung điểm cạnh FC ) 

\(\widehat{AFM}=\widehat{ECM}\left(gt\right)\)

AF = EC ( cmt ) 

=> \(\Delta AFM=\Delta ECM\left(c.g.c\right)\)

\(\Rightarrow MA=ME\) lại có BA = BE \(\Rightarrow MB\) là trung trực của AE 

\(\Rightarrow MB\perp AE\) ( đpcm ) 

2 tháng 4 2020

Thanks bạn !! 

21 tháng 7 2023

Giải thích các bước giải:

a, ΔBAD có BA = BD

⇒ ΔBAD cân ở B

⇒ ���^=���^ (đpcm)

b, Ta có:

ΔAHD vuông ở H ⇒ ���^+���^=90�

ΔABC vuông ở A ⇒ ���^=���^=90�

m���^=���^

⇒ ���^=���^

⇒ AD là tia phân giác của ���^ (đpcm)

c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:

AH chung; ���^=���^

⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)

⇒ AH = AK (đpcm)

d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH

Vậy AB + AC < BC + AH

21 tháng 7 2023

Giải thích các bước giải:

a, ΔBAD có BA = BD

⇒ ΔBAD cân ở B

⇒ ���^=���^ (đpcm)

b, Ta có:

ΔAHD vuông ở H ⇒ ���^+���^=90�

ΔABC vuông ở A ⇒ ���^=���^=90�

m���^=���^

⇒ ���^=���^

⇒ AD là tia phân giác của ���^ (đpcm)

c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:

AH chung; ���^=���^

⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)

⇒ AH = AK (đpcm)

d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH

Vậy AB + AC < BC + AH

Bài làm

B F C A B M D

a) Xét tam giác BAC và tam giác BEF có:

^BAC = ^BEF ( = 90o )

cạnh huyền BC = BF 

góc nhọn: ^B chung.

=> Tam giác BAC = tam giác BEF ( cạnh huyền - góc nhọn )

b) Ta có: ^BFD + ^DFC = ^BFC 

^BCA + ^ACF = ^BCF

hay ^BCA = ^BFE ( Do tam giác BAC = tam giác BEF )

^BCF = ^BFC 

=> ^DFC = ^DCF 

=> Tam giác DFC cân tại D

=> DF = DC

Xét tam giác BDF và tam giác BDC có:

BF = BC

DF = DC

BD chung

=> Tam giác BDF = tam giác BDC

=> ^FBD = ^CBD

=> BD là tia phân giác của góc FBC

c) Vì Tam giác FBC cân tại B

mà BM trung tuyến

=> BM là đường cao

=> BM vuông góc với FC

Vì AB = BE ( Do tam giác BAC = tam giác BFE )

=> Tam giác ABE cân tại B

=> ^ABE = ( 180o - ^FBC )/2                       (1) 

Vì Tam giác BFC cân tại B

=> ^BFC = ( 180o - ^FBC )/2                       (2)

Từ (1) và (2) => ^ABE = ^BFC 

Mà hai góc này vị trí đồng vị

=> AE // FC

Mà BM vuông góc FC

=> BM vuông góc với AC ( đpcm )

# Học tốt #