cho biết (a+2) chia hết cho 5, (b+28) chia hết cho 5. chứng minh rằng (a+b) chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Bài 1:
a) P=(a+5)(a+8) chia hết cho 2
Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Vậy P luôn chia hết cho 2 với mọi a
b) Q= ab(a+b) chia hết cho 2
Nếu a chẵn => ab(a+b) chia hết cho 2
Nếu b chẵn => ab(a+b) chia hết cho 2
Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2
Vậy Q luôn chia hết cho 2 với mọi a và b
bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).
Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10 (1)
ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2
=> 5n(n-1)n(n+1) chia hết cho 10 (2)
Từ (1) và (2) => n5- n chia hết cho 10
Ta có:
3a + 18b = 3(a + 6b) = 3[(a + b) + 5b]
Mà a + b \(⋮\) 5 và 5b \(⋮\) 5
=> (a + b) + 5b \(⋮\) 5
=> 3[(a + b) + 5b] \(⋮\) 5
=> 3a + 18b \(⋮\) 5 (đpcm)
3a + 18b = 3(a + b) + 15b
Mà (a + b) chia hết cho 5 và 15b chia hết cho 6 nên 3a + 18b chia hết cho 5
\(a+3\text{ chia hết cho 5 do đó:}a\text{ chia 5 dư 2};\text{ }b+4\text{ chia hết cho 5 nên }b\text{ chia 5 dư 1}\)
\(\text{ do đó:}a^2+b^2\equiv2^2+1^2\equiv5\equiv0\left(\text{mod 5}\right)\text{ ta có điều phải chứng minh}\)
Vì \(a+3⋮5\)\(\Rightarrow\)\(a\)có dạng \(a=5m+2\)( \(m\inℤ\))
\(b+4⋮5\)\(\Rightarrow\)\(b\)có dạng \(b=5n+4\)( \(n\inℤ\) )
\(a^2+b^2=\left(5m+2\right)^2+\left(5n+1\right)^2\)
\(=25m^2+20m+4+25n^2+10n+1\)
\(=25m^2+20m+25n^2+10n+5⋮5\)( đpcm )
a+2 chia hết 5
vì 2 chia 5 dư 2
=> a chia 5 dư 3
=> a có dạng 5x + 3
b+28 chia hết 5
vì 28 chia 5 dư 3
=>b chia 5 dư 2
=> b có dạng 5y + 2
ta có a + b = 5x + 3 + 5y + 2 = 5(x+y)+5 chia hết 5
mik nha