tìm nghiệm của đa thức 1x+3x^2 hoặc chứng minh đa thức vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-3x^2+x-2=-3\left(x^2-\frac{1}{3}x+\frac{2}{3}\right)\)
\(=-3\left(x^2-2.x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{2}{3}\right)\)
\(=-3\left[\left(x-\frac{1}{6}\right)^2+\frac{23}{36}\right]=-3\left(x-\frac{1}{6}\right)^2-\frac{23}{12}\)
Đa thức luôn âm \(\Rightarrow\)phương trình vô nghiệm
\(-3x^2+x-2=-3\left(x^2-\frac{1}{3}x+\frac{2}{3}\right)\)
\(=-3\left(x^2-2x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{2}{3}\right)\)
\(=-3\left[\left(x-\frac{1}{6}\right)^2+\frac{23}{36}\right]\)
\(=-3\left(x-\frac{1}{6}\right)^2-\frac{23}{12}\)
=> Phương trình luôn vô nghiệm
P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025
=4x^2+5>=5>0 với mọi x
=>P(x) không có nghiệm
vì x^2 >hoặc= 0 (với mọi giá trị của x)
Suy ra x^2-3x+12 > 0 (với mọi x)
Suy ra x^2-3x+12 khác o
Suy ra x^2-3x+12 vô nghiệm
Tham khảo:x^2-5x+20
ta có: x^2-5x+20=x^2-2/5x-2/5x+25/4-25/4+20
=(x^2-2/5x)-(2/5x-25/4)-25/4+80/4
=x(x-2/5)-2/5(x-2/5)+55/4
=(x-2/5)(x-2/5)+55/4
=(x-2/5)^2+55/4
Ta có: (x-2/5)^2>=0 Với x thuộc R
(x-2/5)^2+55/4>=55/4>0
=>Đa thức không có nghiệm
f(x)=3x^2+1x
=3x^2+x
=x(3x+1)=0
\(\Rightarrow\)x=0 hoặc 3x+1=0
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{3}\end{cases}}\)
vậy x=0; x=-1/3 là nghiệm của đa thức f(x)
ta có :\(^{3x^2-6x\ge0}\)
15 >0
=}\(^{3x^2-6x+15\ge15}\)
=}đa thức \(3x^2-6x+15\)vô nghiệm
k giùm mình nhé
` 1x + 3x^2 =0`
` x( 3x + 1) = 0`
\(=>\left[{}\begin{matrix}x=0\\3x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy.....
` 1x + 3x^2 `
` 1x + 3x^2 =0`
` x.( 3x + 1) = 0`
\(=>\left[{}\begin{matrix}x=0\\3x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\3x=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy nghiệm của đa thức là: ` 0, -1/3`