a)\(4590:\left(x-24+14\right)=30\)
b)\(61x\left(126:x\right)=1281\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4590:\left(x-24+14\right)=30\)
\(x-24+14=4590:30\)
\(x-24+14=153\)
\(x-24=153-14\)
\(x-24=139\)
\(x=139+24\)
\(x=163\)
b) \(61\times\left(126:x\right)=1281\)
\(126:x=1281:61\)
\(126:x=21\)
\(x=126:21\)
\(x=6\)
a) 4590 ÷ ( x− 24 + 14 ) = 30
4590 ( x- 10 ) = 30
x - 10 = 4590 : 30
x-10 = 153
x = 153+10
x = 163
a, (19x+2.52) : 14 = (13-8)2 - 42
(19x + 2.25) : 14 = 52 - 42
(19x + 50) : 14 = 25 - 16
(19x + 50) : 14 = 9
19 x + 50 = 9.14
19x + 50 = 126
19x = 126 - 50
19x = 76
x = 76 : 19
x = 4
vậy____
b) x + (x + 1) + (x + 2) + (x + 3)+.....+(x+30) = 1240
(x+x+x+...+x) + (1+2+3+...+30) = 1240
31x + 465 = 1240
31x = 1240 - 465
31x = 775
x = 775 : 31
x = 25
vậy____
c) |x + 7| = 20 + 5.(-3)
|x + 7| = 20 + (-15)
|x + 7| = 5
\(\Rightarrow\orbr{\begin{cases}x+7=5\\x+7=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5-7\\x=-5-7\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\x=-12\end{cases}}\)
vậy_____
a/
\(VT=\dfrac{\left(x+4\right)-\left(x+2\right)}{\left(x+2\right)\left(x+4\right)}+\dfrac{\left(x+8\right)-\left(x+4\right)}{\left(x+4\right)\left(x+8\right)}+\dfrac{\left(x+14\right)-\left(x+8\right)}{\left(x+8\right)\left(x+14\right)}=\)
\(=\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+8}+\dfrac{1}{x+8}-\dfrac{1}{x+14}=\)
\(=\dfrac{1}{x+2}-\dfrac{1}{x+14}=\dfrac{12}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\dfrac{12}{\left(x+2\right)\left(x+14\right)}=\dfrac{x}{\left(x+2\right)\left(x+14\right)}\left(x\ne-2;x\ne-14\right)\)
\(\Rightarrow x=12\)
\(\dfrac{x}{2023}+\dfrac{x+1}{2022}+...+\dfrac{x+2022}{1}+2023=0\)
\(\dfrac{1}{2023}x+\dfrac{1}{2022}x+\dfrac{1}{2022}\cdot1+...+\dfrac{1}{1}x+\dfrac{1}{1}\cdot2022+2023=0\)
\(x\left(\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}\right)+\left(\dfrac{1}{2022}+\dfrac{2}{2021}+...+\dfrac{2022}{1}+2023\right)=0\)
\(x\left(\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}\right)=\dfrac{1}{2022}+\dfrac{2}{2021}+...+\dfrac{2022}{1}+2023\)
\(x=\dfrac{\dfrac{1}{2022}+\dfrac{2}{2021}+...+\dfrac{2022}{1}+2023}{\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}}\)
\(x=\dfrac{\dfrac{1}{2022}+\dfrac{2022}{2022}+\dfrac{2}{2021}+\dfrac{2021}{2021}+...+\dfrac{2022}{1}+\dfrac{1}{1}}{\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}}\)
\(x=\dfrac{\dfrac{2023}{2022}+\dfrac{2023}{2021}+...+\dfrac{2023}{1}}{\dfrac{1}{2022}+\dfrac{1}{2021}+...+\dfrac{1}{1}}=2023\)
Vậy x = 2023
a) \(\left(x^2+x\right)^2-14\left(x^2+x\right)+24\)
Đặt \(x^2+x=y\) ta được:
\(y^2-14y+24\)
\(=x\left(y-12\right)-2\left(y-12\right)\)
\(=\left(y-2\right)\left(y-12\right)\)
Thay ngược trở lại:
\(\left(x^2+x-2\right)\left(x^2+x-12\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x-3\right)\left(x+4\right)\)
d) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+10\right)+1\)
Đặt \(x^2+5x+4=a\) được:
\(a\left(a+6\right)+1\)
\(=a^2+6a+1\)
\(=a^2+2.a.3+3^2-8\)
\(=\left(a+3\right)^2-\left(\sqrt{8}\right)^2\)
\(=\left(a+3-\sqrt{8}\right)\left(a+3+\sqrt{8}\right)\)
Mấy câu kia tương tự.
a, 4590:(x-24+14)=30
x-24+14=4590 : 30
x-24+14=153
x-24=153-14
x-24=139
x=139+24
x=163
phần b mik ko bt