K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

Phân tích trường hợp HĐT

Xét trường hợp :

123x0awf10

P/s: Áp dụng mà làm

30 tháng 10 2017

Gọi \(A=5x^2+2y^2+14+4xy-4y+8x\)

\(=\left(4x^2+4xy+y^2\right)+\left(4x+2y\right)+1+\left(x^2+4x+4\right)+\left(y^2-6y+9\right)\)

\(=\left(2x+y\right)^2+2\left(2x+y\right)+1+\left(x+2\right)^2+\left(y-3\right)^2\)

\(=\left(2x+y+1\right)^2+\left(x+2\right)^2+\left(y-3\right)^2\)

Ta thấy các hạng tử của A đều \(\ge0\) nên \(A\ge0\forall x;y\) mà đề lại cho \(A\le0\) \(\Rightarrow A=0\)

\(\Leftrightarrow\left(2x+y+1\right)^2+\left(x+2\right)^2+\left(y-3\right)^2=0\)\(\Rightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)

29 tháng 10 2016

phâm tích nó thành HĐT 

r` xét trường hợp

123x0awf10

29 tháng 10 2016

k phân tích đc, nếu phân tích đc thì t đã không phải đăng lên đay làm gì cho mệt

AH
Akai Haruma
Giáo viên
5 tháng 1 2023

Lời giải:

ĐKĐB $\Leftrightarrow (x^2+4y^2-4xy)+8x=5$

$\Leftrightarrow (x-2y)^2+8x=5$.

Đặt $x-2y=a; x=b$ thì bài toán trở thành:

Cho $a,b$ thực thỏa mãn $a^2+8b=5$. Tìm max của $B=-2a+8b$

Áp dụng BĐT AM-GM:

$a^2+1\geq 2\sqrt{a^2}=2|a|\geq -2a$

$\Rightarrow a^2+1\geq -2a$

$\Rightarrow a^2+8b+1\geq -2a+8b$

$\Leftrightarrow 6\geq B$. Vậy $B_{\max}=6$

12 tháng 2 2023

\(3x^2+y^2+4xy=5x+2y+1\)

\(\Leftrightarrow3x^2+x\left(4y-5\right)+\left(y^2-2y-1\right)=0\left(1\right)\)

Coi phương trình (1) là phương trình ẩn x tham số y, ta có:

\(\Delta=\left(4y-5\right)^2-3.4.\left(y^2-2y-1\right)\)

\(=16y^2-40y+25-12y^2+24y+12\)

\(=4y^2-16y+37\)

Để phương trình (1) có nghiệm nguyên thì \(\Delta\) phải là số chính phương hay \(\Delta=4y^2-16y+37=a^2\) (a là số tự nhiên).

\(\Rightarrow4y^2-16y+16+21=a^2\)

\(\Rightarrow a^2-\left(2y-4\right)^2=21\)

\(\Rightarrow\left(a-2y+4\right)\left(a+2y-4\right)=21\)

\(\Rightarrow a-2y+4;a+2y-4\) là các ước số của 21.

Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:

a-2y+413
a+2y-4217
a115
y7

3

Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:

a-2y+4217
a+2y-413
a115
y-3(loại vì y>0)1

Với a=11, y=7. Phương trình (1) có 2 nghiệm:

\(x_1=\dfrac{-\left(4.7-5\right)+\sqrt{11^2}}{6}=-2\) (loại vì x>0)

\(x_2=\dfrac{-\left(4.7-5\right)-\sqrt{11^2}}{6}=-\dfrac{17}{3}\left(loại\right)\)

Với \(a=5;y=3\). Phương trình (1) có 2 nghiệm:

\(x_1=\dfrac{-\left(4.3-5\right)+\sqrt{5^2}}{6}=-\dfrac{1}{3}\left(loại\right)\)

\(x_2=\dfrac{-\left(4.3-5\right)-\sqrt{5^2}}{6}=-2\) (loại vì x>0)

Với \(a=5;y=1\). Phương trình (1) có 2 nghiệm:

\(x_1=\dfrac{-\left(4.1-5\right)+\sqrt{5^2}}{6}=1\)

\(x_2=\dfrac{-\left(4.1-5\right)-\sqrt{5^2}}{6}=-\dfrac{2}{3}\left(loại\right)\)

Vậy x,y nguyên dương thỏa mãn phương trình trên là \(x=y=1\)

 

12 tháng 2 2023

cho mình hỏi sao để nó có nghiệm nguyên khi nó là số chính phương thế bạn

 

21 tháng 8 2020

\(3x^2+y^2+4xy-8x-2y=0\)

\(\Leftrightarrow4x^2+4xy+y^2-4x-2y+1-x^2-4x-4=-3\)

\(\Leftrightarrow\left(2x+y-1\right)^2-\left(x+2\right)^2=-3\)

\(\Leftrightarrow\left(2x+y-1-x-2\right)\left(2x+y-1+x+2\right)=-3\)

\(\Leftrightarrow\left(x+y-3\right)\left(3x+y+1\right)=-3\)

Do \(x,y\in Z\Rightarrow x+y-3;3x+y+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Bạn lập bảng xét ước rồi tìm ra x,y thỏa mãn

Vậy \(\left(x,y\right)=\left(0,2\right);\left(-4,8\right);\left(-4;10\right);\left(0,0\right)\)

25 tháng 10 2017

Theo gt: x+y≤ 2 (x + 2y) x+ y≤ 2(x + 2y)

Ta có: (x + 2y)≤ (12 + 22)(x+ y2) ≤ 5.2(x + 2y)(x + 2y)2 ≤ (1+ 22)(x2+y2) ≤ 5.2(x+2y)

⇒ x + 2y ≤ 10 ⇒ x + 2y ≤ 10 (đpcm)

4 tháng 8 2019

Ta có: \(x^2+4y^2+x=4xy+2y+2\)

        \(\Rightarrow x^2-4xy+4y^2+x-2y=2\)

      \(\Rightarrow\left(x-2y\right)^2+\left(x-2y\right)=2\)

      \(\Rightarrow\left(x-2y\right)\left(x-2y+1\right)=2\) 

Tìm các TH

Mặt khác : \(4x^2+4xy+y^2=2x+y+56\) 

                \(\Rightarrow\left(2x+y\right)^2-\left(2x+y\right)=56\)

               \(\Rightarrow\left(2x+y\right)\left(2x+y-1\right)=56\)

Tìm các TH