Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả thiết tương đương \(\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=29\).
Áp dụng bđt Cauchy - Schwarz ta có:
\(\left(2x-3y+4z-20\right)^2=\left[2\left(x-1\right)-3\left(y+2\right)+4\left(z-3\right)\right]^2\le\left(2^2+3^2+4^2\right)\left[\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2\right]=29^2\Rightarrow\left|2x-3y+4z-20\right|\le29\)
Phương trình tương đương với \(x^2+y^2=4x+2\left(1\right)\)
Ta có: \(x^2-4x-2=-y^2\le0\Rightarrow\left(x-\sqrt{6}-2\right)\le0\)
\(\Leftrightarrow2-\sqrt{6}\le x\le2+\sqrt{6}\)
\(\Leftrightarrow10-4\sqrt{6}\le4x+2\le10+4\sqrt{6}\left(2\right)\)
Từ 1 và 2 \(\Rightarrow10-4\sqrt{6}\le x^2+y^2\le10+4\sqrt{6}\)
Nhận xét: bài toán áp dụng biến đổi tương đương 1 pt, giả bpt bậc 2.
* Biến đổi tương đương 1 pt:
\(x^2+y^2-4x-2=0\Leftrightarrow x^2+y^2=4x+2\left(1\right)\)
\(\Leftrightarrow x^2-4x-2=-y^2\left(2\right)\)
* BĐT:
Ta có: \(y^2\ge0\Leftrightarrow-y^2\le0\)kết hợp với (2) ta có: \(x^2-4x-2\le0\)
* giải bpt bậc 2:
\(x^2-4x-2\le0\Leftrightarrow\left(x-\sqrt{6}-2\right)\left(x+\sqrt{6}-2\right)\le0\Leftrightarrow2-\sqrt{6}\le x\le2+\sqrt{6}\)
* Biến đổi tương đương bpt:
\(2-\sqrt{6}\le x\le2+\sqrt{6}\Leftrightarrow10-4\sqrt{6}\le4x+2\le10+4\sqrt{6}\)
Kết hợp với (1) ta có \(10-4\sqrt{6}\le x^2+y^2\le10+4\sqrt{6}\left(\text{đ}pcm\right)\)
Theo gt: x2 +y2 ≤ 2 (x + 2y) x2 + y2 ≤ 2(x + 2y)
Ta có: (x + 2y)2 ≤ (12 + 22)(x2 + y2) ≤ 5.2(x + 2y)(x + 2y)2 ≤ (12 + 22)(x2+y2) ≤ 5.2(x+2y)
⇒ x + 2y ≤ 10 ⇒ x + 2y ≤ 10 (đpcm)