K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2015

Ta có:

x^2+x-1=(x^2+2)+(x-3)

Do đó:

(x^2+x-1) chia hết cho (x^2+2)

<=>(x-3) chia hết cho (x^2+2)

(x-3) chia hết cho (x^2+2)=>(x-3)(x+3) chia hết cho (x^2+2)

=>(x^2-9) chia hết cho (x^2+2)

=>(x^2+2)-11 chia hết cho x^2+2

=>-11 chia hết cho x^2+2

=>x^2+2 thuộc Ư(-11)

Mà x^2+2 > 2 và x là số nguyên nên x^2+2=11

=>x^2=9 =>x=+3

Thử trực tiếp ta có x=3 là thích hợp

o-l-m cho đúng được ko?

Các bạn chỉ tớ ghi dấu chia hết trong o-l-m với, ghi chữ mỏi tay quá

 

8 tháng 2 2023

 x2 + x + 1  là bội của x - 2 

⇔ x2 + x + 1 ⋮ x - 2

x2 - 4 + x - 2 + 7 ⋮ x - 2

(x2 - 2x) + ( 2x - 4) + ( x - 2) + 7 ⋮ x - 2

x( x - 2) + 2 ( x - 2) + ( x - 2) + 7 ⋮ x - 2

(x-2)( x + 2) + (x -2) + 7 ⋮ x - 2

⇔ 7 ⋮ x - 2

x - 2 \(\in\) { -7; -1; 1; 7}

Lập bảng 

x- 2 -7  -1  1  7
x  -5  1  3  9

Vậy x \(\in\) { -5; 1; 3; 9}

 

8 tháng 2 2023

Cách 2 : nhanh hơn nếu dùng bezout

Theo bezout ta có : F(x) = x2 + x + 1 ⋮ x - 2⇔ F(2) ⋮ x - 2

⇔ 22 + 2 + 1 ⋮  x - 2 ⇔ 7 ⋮ x - 2;  ⇒ x - 2 \(\in\) { -7; -1; 1;7}

x ϵ { -5; 1; 3; 9}

NV
13 tháng 1

a.

\(\Leftrightarrow2x^2-4x+4y^2=4xy+4\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4x+4\right)=8\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2\right)^2=8\) (1)

Do \(\left(x-2y\right)^2\ge0;\forall x;y\)

\(\Rightarrow\left(x-2\right)^2\le8\)

\(\Rightarrow\left(x-2\right)^2=\left\{0;1;4\right\}\)

TH1: \(\left(x-2\right)^2\Rightarrow x=2\) thế vào (1)

\(\Rightarrow\left(2-2y\right)^2=8\Rightarrow\left(1-y\right)^2=2\) (ko tồn tại y nguyên t/m do 2 ko phải SCP)

TH2: \(\left(x-2\right)^2=1\Rightarrow\left(x-2y\right)^2=8-1=7\), mà 7 ko phải SCP nên pt ko có nghiệm nguyên

TH3: \(\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\) thế vào (1):

- Với \(x=0\Rightarrow\left(-2y\right)^2+4=8\Rightarrow y^2=1\Rightarrow y=\pm1\)

- Với \(x=2\Rightarrow\left(2-2y\right)^2+4=8\Rightarrow\left(1-y\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\)

Vậy pt có các cặp nghiệm là: 

\(\left(x;y\right)=\left(0;1\right);\left(0;-1\right);\left(2;0\right);\left(2;2\right)\)

NV
13 tháng 1

b.

\(\Leftrightarrow2x^2+4y^2+4xy-4x=14\)

\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=18\)

\(\Leftrightarrow\left(x+2y\right)^2+\left(x-2\right)^2=18\) (1)

Lý luận tương tự câu a ta được 

\(\left(x-2\right)^2\le18\Rightarrow\left(x-2\right)^2=\left\{0;1;4;9;16\right\}\)

Với \(\left(x-2\right)^2=\left\{0;1;4;16\right\}\) thì \(18-\left(x-2\right)^2\) ko phải SCP nên ko có giá trị nguyên x;y thỏa mãn

Với \(\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\) thế vào (1)

- Với \(x=5\Rightarrow\left(5+2y\right)^2+9=18\Rightarrow\left(5+2y\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}5+2y=3\\5+2y=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)

- Với \(x=-1\Rightarrow\left(-1+2y\right)^2=9\Rightarrow\left[{}\begin{matrix}-1+2y=3\\-1+2y=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(5;-1\right);\left(5;-4\right);\left(-1;3\right);\left(-1;-3\right)\)

20 tháng 3 2020

a) (x2-1)(x2-4)<0

=> x2-1 và x2-4 trái dấu nhau

Ta thấy: x2 >=0 với mọi x => x2-1 > x2-4 

=> \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}\Leftrightarrow}\hept{\begin{cases}x>\pm1\\x< \pm2\end{cases}}}\)

=> Không có giá trị củ x thỏa mãn đề bài

23 tháng 8 2017

Đáp án D

Ta có lim x → 2 − f x = lim x → 2 − 2 x 2 − 7 x + 6 x − 2 = lim x → 2 − 2 x 2 − 7 x + 6 x − 2 = lim x → 2 − − 2 x − 3 = − 1  

Và lim x → 2 − f x = lim x → 2 − a + 1 − x 2 + x = a − 1 4 ; f 2 = a − 1 4 .  

Theo bài ra, ta có lim x → 2 + f x = lim x → 2 − f x = f 2 ⇒ a = − 3 4  

Do đó, bất phương trình − x 2 + a   x + 7 4 > 0 ⇔ − x 2 − 3 4 x + 7 4 > 0 ⇔ − 7 4 < x < 1.  

AH
Akai Haruma
Giáo viên
9 tháng 12 2021

Bạn tham khảo bài này:
https://hoc24.vn/cau-hoi/cho-biet-y-ti-le-thuan-voi-x1-x2-la-cac-gia-tri-cua-x-y1y2-la-cac-gia-tri-tuong-uong-cua-y-a-biet-xy-ti-le-thuan-va-x1-2-x2-3-y1-12-tim-y2-b-biet-xy-ti-le-nghich-v.3536605510330

19 tháng 12 2017

Đáp án D

AH
Akai Haruma
Giáo viên
9 tháng 12 2021

Lời giải:
a. Vì $x,y$ tỉ lệ thuận nên đặt $y=kx$. Ta có:

$y_1=kx_1$ hay $\frac{1}{2}=k.2\Rightarrow k=\frac{1}{4}$. Vậy $y=\frac{1}{4}x$

$y_2=kx_2=\frac{1}{4}x_2=\frac{1}{4}.3=\frac{3}{4}$

b.

Vì $x,y$ tỉ lệ nghịch nên đặt $xy=k$.

$x_1y_1=k=x_2y_2$

$\Leftrightarrow \frac{1}{2}.4=x_2.(-4)$

$\Leftrightarrow x_2=\frac{-1}{2}$

27 tháng 12 2021
Tìm 5 giá trị của x biết 5,8>x>5,7
2 tháng 11 2021

\(1,\)

\(\left(x+2\right)^2\ge0;\left(y-4\right)^2\ge0;\left(2y-4\right)^2\ge0\\ \Leftrightarrow\left(x+2\right)^2+\left(y-4\right)^2+\left(2y-4\right)^2\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\\y=2\end{matrix}\right.\left(vô.lí\right)\)

Do đó PT vô nghiệm

\(2,\Leftrightarrow x^2-2x-3=0\Leftrightarrow x^2+x-3x-3=0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)