giá trị của a, b thỏa mãn a/b=-1,2/3,2 và b-a=5,94
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(\frac{a}{b}=\frac{-1,2}{3,2}\Rightarrow\frac{a}{-1,2}=\frac{b}{3,2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{-1,2}=\frac{b}{3,2}=\frac{b-a}{3,2-\left(-1,2\right)}=\frac{5,94}{4,4}=1,35\)
+) \(\frac{a}{-1,2}=1,35\Rightarrow a=-1,62\)
+) \(\frac{b}{3,2}=1,35\Rightarrow b=4,32\)
Vậy \(a=-1,62;b=4,32\)
Ta có: a/-1,2=b/3,2
áp dụng tc dãy tỉ số bằng nhau, có:
b/3,2-a/=-1/2=5,94/22/5=27/20
Từ: a/-1,2=27/20 suy ra a= -1,62
Vậy a= -1,62
Ta có a/b=-1,2/3,2 Suy ra a/-1,2=b/3,2. Lại có b-a=5,94
áp dụng tính chất dãy tỉ số bằng nhau ta được:a/-1,2=b/3,2=(b-a)/[3,2-(-1,2)]=5,94/4,4=1,35
Do đó a/-1,2=1,35 suy ra a=1,35.(-1,2)=-1,62
Theo bài ra ta có:a/b =-1,2/3,2 nên ta có:
a/-1,2 =b/3,2
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
a/-1,2 =b/3,2 =b-4/3,2-(-1,2)=5,94/4,4=1,35
Từ a/-1,2=1,35 nên a=1,35* (-1,2) =-1,62
b/3,2=1,35 nên b=1,35*3,2=4,32
Vậy a=-1,62 ;b=4,32
LƯU Ý
Các bạn học sinh ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math không thể áp dụng các biện pháp như trừ điểm, thậm chí mở vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần
Ta có:
\(a^3+b^3=3ab-1\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=3ab-1\)
\(\Leftrightarrow\left(a+b\right)\left(a^2+2ab+b^2-3ab\right)=3ab-1\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)=3ab-1\)
\(\Leftrightarrow\left(a+b\right)^3+1-3ab\left(a+b\right)-3ab=0\)
\(\Leftrightarrow\left(a+b+1\right)\left[a^2+2ab+b^2-a-b+1\right]-3ab\left(a+b+1\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left(a^2-ab+b^2-a-b+1\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left(2a^2+2b^2-2ab-2a-2b+2\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left(a^2-2a+1+b^2-2b+1+a^2-2ab+b^2\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left[\left(a-1\right)^2+\left(b-1\right)^2+\left(a-b^2\right)\right]=0\)
.......
Mình nghĩ đề a, b là 2 số dương nha, nếu a,b là 2 số dương thì mình loại được trường hợp a+b+1=0 nhé
\(\frac{a}{b}=\frac{-2,5}{4,5}\Rightarrow\frac{a}{-2,5}=\frac{b}{4,5}\)
áp dụng ...ta có
\(\frac{a}{-2,5}=\frac{b}{4,5}=\frac{a+b}{-2,5+4,5}=\frac{1,44}{2}=0,72\)
\(\frac{a}{-2,5}=0,72\Rightarrow a=0,72.\left(-2,5\right)=-1,8\)
\(\frac{b}{4,5}=0,72\Rightarrow b=0,72.4,5=3.24\)