giá trị nguyên của a để : D = -/2a-4/ - 2 đạt giá trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
D=(n+1)/(n-2)=n-2-1/n-2 =n-2/n-2 + 1/n-2 =1+1/n-2
Để D lớn nhất thì D' =1/n-2
Khi n-2<0 suy ra d'<0
Khi n-2>0 suy ra d'>o
Để d' =1/n-2 đạt max thì n-2 phải là giá trị nguyên dương nhỏ nhất.
n-2=1=>n=3 và khi n=3 thì max D=3+1/3-2=4
\(D=\frac{3}{n-2}+1\)
Để D lớn nhất thì \(\frac{3}{n-2}\)lớn nhất tức n-2 nhỏ nhất và n-2 dương
Do n nguyên nên GTNN của n-2 là 1, n=3
Vậy GTLN của D=\(\frac{3+1}{3-2}=4\)
A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất
=> x - 1 lớn nhất
=> x là số dương vô cùng đề sai nhá