98 + 202
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\
(202+98) x 2 = 600
(Vì 202 cũng như 98 được lập lại nên ta chỉ cần cộng hai số 202 vầ 98 rồi nhân 2 là được) -> Giải thích bài khỏi ghi nhé
202 + 96 + 2 + 98 + 1 + 1
= 202 + (96 + 1 + 1 ) + ( 98 + 2 )
= 202 + 98 + 100
= 300 + 100
= 400
ta có
\(\frac{2.6.10+6.10.14+..+194.198.202}{1.3.5+3.5.7+..+97.99.101}=\frac{8.1.3.5+8.3.5.7+..+8.97.99.101}{1.3.5+3.5.7+..+97.99.101}\)
\(=\frac{8.\left(1.3.5+3.5.7+..+97.99.101\right)}{1.3.5+3.5.7+..+97.99.101}=8\)
1.
a) \(x^3-\frac{1}{2}=\left(-\frac{3}{8}\right)\)
\(\Rightarrow x^3=\left(-\frac{3}{8}\right)+\frac{1}{2}\)
\(\Rightarrow x^3=\frac{1}{8}\)
\(\Rightarrow x^3=\left(\frac{1}{2}\right)^3\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}.\)
b) \(\left(2x-1\right)^3=-8\)
\(\Rightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Rightarrow2x-1=-2\)
\(\Rightarrow2x=\left(-2\right)+1\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\left(-1\right):2\)
\(\Rightarrow x=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}.\)
c) \(17+3^x=98\)
\(\Rightarrow3^x=98-17\)
\(\Rightarrow3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
Vậy \(x=4.\)
Chúc bạn học tốt!
Mình cảm mơn ^^
sẵn tiện có thể giúp mình cách tính nhân chia của tỉ lệ thuận và nghịch được không? Mình hơi rối chỗ này á
a) \(=\left(127+73\right)^2=200^2=40000\)
b) \(=18^8-\left(18^8-1\right)=1\)
c) \(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=100+99+98+97+...+2+1=5050\)
d) biến đổi thành \(20^2-19^2+18^2-17^2+..+2^2-1^2\)
rồi giải ra như trên
A = - ( 1+2+3 +....+ 202) = - 203. 101 = -20503
B= ( 1+2-3-4) + ( 5+6-7-8) +..........+( 97+98 -99-100) + ( 101+102)
= -4 + (-4) .........+ (-4) + 203
= -4 .25 + 203 = 103
a) \(227+50+23=\left(227+23\right)+50=250+50=300\)
b) \(135+360+65+40=\left(135+65\right)+\left(360+40\right)=200+400=600\)
c) \(1+2+3+4+5+...+97+98+99+100\)
\(=\left(100+1\right)+\left(99+2\right)+...+\left(50+51\right)\)
\(=101+101+101+...+101\)
\(=101\cdot50\)
\(\Leftrightarrow5050\)
d) \(115\cdot13-13\cdot15=13\cdot\left(115-15\right)=13\cdot100=1300\)
e) \(50-49+48-47+...+4-3+2-1\)
\(=\left(50-49\right)+\left(48-47\right)+...+\left(2-1\right)\)
\(=1+1+1+1+..+1\)
\(=1\cdot25\)
\(=25\)
f) \(30\cdot40\cdot50\cdot60=10\cdot3+10\cdot4+10\cdot5+10\cdot6\)
\(=10\cdot10\cdot10\cdot10\cdot3\cdot4\cdot5\cdot6\)
\(=10000\cdot360\)
\(=3600000\)
g) \(27\cdot36+27\cdot64=27\cdot\left(36+64\right)=27\cdot100=2700\)
h) \(5\cdot2^2-18:3=5\cdot4-18:3=20-6=14\)
i) \(13\cdot17-256:16+14:7-2021^0\)
\(=13\cdot17-4^4:4^2+2-1\)
\(=13\cdot17-16+2-1\)
\(=13\cdot17-17\)
\(=17\cdot\left(13-1\right)\)
\(=204\)
j) \(7^2-36:3=49-12=37\)
Bài 1:
$A=1.2+2.3+3.4+...+201.202$
$3A=1.2.3+2.3(4-1)+3.4(5-2)+....+201.202(203-200)$
$=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+201.202.203-200.201.202$
$=(1.2.3+2.3.4+3.4.5+...+201.202.203)-(1.2.3+2.3.4+....+200.201.202)$
$=201.202.203$
$\Rightarrow A=\frac{201.202.203}{3}=2747402$
Bài 2:
$S=4.5+5.6+6.7+....+100.101$
$3S=4.5(6-3)+5.6.(7-4)+6.7.(8-5)+....+100.101(102-99)$
$=4.5.6-3.4.5+5.6.7-4.5.6+6.7.8-5.6.7+....+100.101.102-99.100.101$
$=(4.5.6+5.6.7+6.7.8+...+100.101.102)-(3.4.5+4.5.6+5.6.7+...+99.100.101)$
$=100.101.102-3.4.5$
$\Rightarrow S=\frac{100.101.102-3.4.5}{3}=343380$
98+202=300
k nha bn
300, k nhaaaaaaaaaaaaaâ