Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{2.6.10+6.10.14+...+194+198+202}{1.3.5+3.5.7+...+97.99.101}\)\(=\frac{2.2.2\left(1.3.5\right)+2.2.2\left(3.5.7\right)+...+2.2.2\left(97.99.101\right)}{1.3.5+3.5.7+...+97.99.101}\)
\(=\frac{2.2.2\left(1.3.5+3.5.7+...+97.99.101\right)}{1.3.5+3.5.7+...+97.99.101}\)\(=\frac{2.2.2}{1}=8\)
\(C=\left(1-2-3-4\right)+...+\left(197-198-199-200\right)\)
=-8x25=-200
\(D=-\left(11+13+...+99\right)+\left(10+12+...+98\right)\)
=(-1)+(-1)+...+(-1)
=-1x45=-45
A = 1 + 3 + 5 + ... + 101
A = ( 101 + 1) x 51 : 2
A = 2061
B = 1 + 4 + 7 + 10 + ...+ 100
B = ( 1 + 100) x 34 :2
B = 1717
$B=1+2+3+4+...+2022+2023$
Số các số hạng của B là:
$(2023-1):1+1=2023$ (số)
Tổng B bằng:
$(2023+1)\cdot2023:2=2047276$
$---$
$C=2+4+6+...+98+100$
Số các số hạng của C là:
$(100-2):2+1=50$ (số)
Tổng C bằng:
$(100+2)\cdot50:2=2550$
$---$
$D=1+3+5+...+97+99$
Số các số hạng của D là:
$(99-1):2+1=50$ (số)
Tổng D bằng:
$(99+1)\cdot50:2=2500$
$---$
$E=10+14+18+...+98+102$
Số các số hạng của E là:
$(102-10):4+1=24$ (số)
Tổng E bằng:
$(102+10)\cdot24:2=1344$
$Toru$
Số lượng số hạng:
\(\left(2023-1\right):1+1=2023\) (số hạng)
Tổng B là:
\(B=\left(2023+1\right)\cdot2023:2=2047276\)
_______________
Số lượng số hạng là:
\(\left(100-2\right):2+1=50\) (số hạng)
Tổng C là:
\(C=\left(100+2\right)\cdot50:2=2550\)
________________
Số lượng số hạng là:
\(\left(99-1\right):2+1=50\) (số hạng)
Tổng D là:
\(D=\left(99+1\right)\cdot50:2=2500\)
________________
Số lượng số hạng là:
\(\left(102-10\right):4+1=24\) (số hạng)
Tổng E là:
\(E=\left(102+10\right)\cdot24:2=1334\)
ta có
\(\frac{2.6.10+6.10.14+..+194.198.202}{1.3.5+3.5.7+..+97.99.101}=\frac{8.1.3.5+8.3.5.7+..+8.97.99.101}{1.3.5+3.5.7+..+97.99.101}\)
\(=\frac{8.\left(1.3.5+3.5.7+..+97.99.101\right)}{1.3.5+3.5.7+..+97.99.101}=8\)