K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2016

 Đặt A = 3^p -2^p -1 
Vì 42p=2.3.7.p mà p là SNT > 7 nên ta cần CM A chia hết cho 2,3,7,p 

Dễ thấy A chia hết cho 2 vì 3^p lẻ còn 2^p chẵn 

p lẻ nên 2^p=2^(2k+1)=(2^2)^k.2 ≡ 2 (mod 3) ⇒ A ≡ 0-2-1 ≡ 0 (mod 3) 

p không chia hết cho 3 nên p=3k+1 hoặc p=3k+2 
    Nếu p=3k+1: Vì p lẻ nên k chẵn ⇒ p=6m+1 ⇒ 3^p=3^(6m+1)=(3^6)^m.3 ≡ 3 (mod 7) còn 2^p=2^(3k+1) ≡ 2 (mod 7) ⇒ A ≡ 3-2-1 ≡ 0 (mod 7) 
    Nếu p=3k+2: Vì p lẻ nên k lẻ ⇒ p=6m+5 ⇒ 3^p=3^(6m+5) ≡ 3^5 ≡ 5 (mod 7) còn 2^p=2^(3k+2) ≡ 4 (mod 7) ⇒ A ≡ 5-4-1 ≡ 0 (mod 7) 
Tóm lại A chia hết cho 7 

Áp dụng định lý Fermat nhỏ ta có: 
3^p ≡ 3 (mod p) 
2^p ≡ 2 (mod p) 
⇒ A ≡ 3-2-1 ≡ 0 (mod p) 

=> đpcm

2 tháng 11 2016

CMR là chứng minh rồi . Mà chứng minh rồi thì làm chi nữa cho nó mệt.

16 tháng 6 2015

BÀi 4 :VÌ p và 5 là 2 số nguyên tố cùng nhau nên p không chia hết cho 5 

Ta có P8n+3P4n-4 = p4n(p4n+3) -4 

Vì 1 số không chia hết cho 5 khi nâng lên lũy thừa 4n sẽ có số dư khi chia cho 5 là 1 

( cách chứng minh là đồng dư hay tìm chữ số tận cùng )

suy ra : P4n(P4n+3) -4 đồng dư với 1\(\times\)(1+3) -4 = 0 ( mod3) hay A chia hết cho 5

Bài 5

Ta xét :

Nếu p =3 thì dễ thấy 4P+1=9 là hợp số (1)

Nếu p\(\ne\)3 ; vì 2p+1 là số nguyên tố nên p không thể chia 3 dư 1 ( vì nếu p chia 3 duw1 thì 2p+1 chia hết cho 3 và 2p+1 lớn hơn 3 nên sẽ là hợp số trái với đề bài)

suy ra p có dạng 3k+2 ; 4p+1=4(3k+2)+1=12k+9 chia hết cho 3 và 4p+1 lớn hơn 3 nên là 1 hợp số (2)

Từ (1) và (2) suy ra 4p+1 là hợp số 

31 tháng 5 2018

hóng bài giải câu 1 quá

11 tháng 2 2016

bai toan nay kho qua

2 tháng 2 2016

x+x+x+x+x+x+x+x+x+x=46595+x+x+x+x+12

=> x*10 = 46607+x*4

=> x*10 - x*4 =46607

=> x*6 = 46607 

=> x = 7767.833333..... chia ko hết

vậy x = 7767.83333333....chia ko hết

duyệt nha các bn

 

9 tháng 11 2015

papa kêu ko cmt linh tinh để Dũng khỏi mệt xóa tin nhắn => 2 ng` iu nhau cmnr kk