Tìm 2 chữ số tận cùng
23n+3 . 3n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thử 0 vào x ta có:
\(2^3\times47^2=17672\)
Thay 1 ta có
\(2^6\times47^3=6644672\)
\(\Rightarrow3\)chữ số tận cùng đó là 672
Giải:
Thử 0 vào n, ta được:
23 x 472 = 17672
Thay 1, ta có:
26 x 473 = 6644672
=> 3 chữ số tận cùng là 672
A=2^(3n).3^2=8^n.3^n=24^n
neu n le n=2k+1
A=24.(24)^2k=24.(...76)^k=24.(..76)=(...24)
neu n chan n=2k
A=(24)^2k=(...76)^k =(...76)
ket luanj:
2 so tan cung laf
24 neu n le
76 neu n chan
Bài 1:
a; (n + 4) \(⋮\) ( n - 1) đk n ≠ 1
n - 1 + 5 ⋮ n - 1
5 ⋮ n - 1
n - 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) { -4; 0; 2; 6}
Bài 1 b; (n2 + 2n - 3) \(⋮\) (n + 1) đk n ≠ -1
n2 + 2n + 1 - 4 ⋮ n + 1
(n + 1)2 - 4 ⋮ n + 1
4 ⋮ n + 1
n + 1 \(\in\) Ư(4) = {-4; -2; -1; 1; 2; 4}
n \(\in\) {-5; -3; -2; 0; 1; 3}
Cristiano Ronaldoĩ 17/05/2015 lúc 10:21
Báo cáo sai phạm
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư khi chia cho 9. Tổng các chữ số của x ; của 2x; của 3x cộng lại là 1 + 2+ ……+ 9 = 45, chia hết cho 9, do đó tổng x + 2x + 3x cũng chia hết cho 9, tức là 6x chia hết cho 9 => x chia hết cho 3
Do x có tận cùng bằng 2 nên 2x tận cùng bằng 4 và 3x tận cùng bằng 6
Gọi a và b là các chữ số hàng trăm, hàng chục của 3x thì
a,b∈{1;3;5;7;8;9} (Trừ các số 2, 4, 6) mặt khác x chia hết cho3 nên 3x chia hết cho 9.
Tức là: abc chia hết cho 9 do đó a +b + 6 chia hết cho 9 chú ý : 4
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư khi chia cho 9. Tổng các chữ số của x ; của 2x; của 3x cộng lại là 1 + 2+ ……+ 9 = 45, chia hết cho 9, do đó tổng x + 2x + 3x cũng chia hết cho 9, tức là 6x chia hết cho 9 => x chia hết cho 3
Do x có tận cùng bằng 2 nên 2x tận cùng bằng 4 và 3x tận cùng bằng 6
Gọi a và b là các chữ số hàng trăm, hàng chục của 3x thì
a,b∈{1;3;5;7;8;9} (Trừ các số 2, 4, 6) mặt khác x chia hết cho3 nên 3x chia hết cho 9.
Tức là: abc chia hết cho 9 do đó a +b + 6 chia hết cho 9 chú ý : 4
Bài 3:
a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
Bài 1:
Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy: A có chữ số tận cùng là 0
Bài 2:
Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)
\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)
\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)
mà \(8\left(125a+12b+c\right)⋮8\)
và \(2c+4b+d⋮8\)
nên \(abcd⋮8\)(đpcm)