cho hình chữ nhật ABCD có AB=8cm, AD=6cm. từ A hạ AH vuông góc BD(H thuộc BD)
a.cmr:AD.AB=AH.DB
b.tính AH
c.tính diện tích hình thang AHCB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Tính DH=3,6cm.
-Từ C kẻ CK vuông với BD. Có CK=AH
-Xét tam giác ADH và DHC có chung đáy DH, chiều cao = nhau => diện tích = nhau
=> Diện tích tứ giác AHCB = diện tích ABCD - 2 lần diện tích tam giác ADH = 30,72
Đúng thì k hộ nhe =)))
a) Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AB^2+AD^2\)
\(\Leftrightarrow BD^2=6^2+8^2=100\)
hay BD=10(cm)
b) Xét ΔDHA vuông tại H và ΔDAB vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔDHA\(\sim\)ΔDAB(g-g)
BH=căn 10^2-6^2=8cm
=>BD=10^2/8=12,5cm
=>AD=7,5cm
S ABCD=7,5*10=75cm2
a: \(\left\{{}\begin{matrix}AB^2+AD^2=BD^2=25\\\dfrac{1}{AB^2}+\dfrac{1}{AD^2}=\dfrac{1}{AH^2}=\dfrac{25}{144}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=4\left(cm\right)\\AC=3\left(cm\right)\end{matrix}\right.\)
\(\Leftrightarrow S_{ABCD}=AB\cdot AC=12\left(cm^2\right)\)
a: BD=căn 8^2+6^2=10cm
b: Xét ΔDHA vuông tại H và ΔDAB vuông tại A có
góc HDA chung
=>ΔDHA đồng dạng với ΔDAB
c: AH=8*6/10=4,8cm
hình bạn tự vẽ nha
áp dụng định lý py ta go vào tam giác ABD ta có AD^2 + AB^2 =64 (1)
áp dụng định lý pytago vào tam giác ABH ta có AB^2 = AH^2+ 36 (2)
áp dụng định lý pytago vào tam giác AHD ta có AD^2= AH^2 +4 (3)
thay (2)và (3) vào (1)
ta có 2AH^2 =24
=> AH^2 =12
thay AH^2=12 lần lượt vào 2 và 3
=> AB^2=12+36=48=>AB=\(\sqrt{48}\)
AD^2=12+4=16 => AD=4